-
Notifications
You must be signed in to change notification settings - Fork 249
/
Copy pathconfig.ini
133 lines (89 loc) · 3.72 KB
/
config.ini
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
[project]
# The project name, used as the filename of the package and the PDF file. For
# example, if set to d2l-book, then will build d2l-book.zip and d2l-book.pdf
name = d2l-vi
# Book title. It will be displayed on the top-right of the HTML page and the
# front page of the PDF file
title = Đắm mình vào Học Sâu
author = Aston Zhang, Zachary C. Lipton, Mu Li, and Alexander J. Smola
translator_team = MLBVN Team
copyright = 2022, All authors. Licensed under CC-BY-SA-4.0 and MIT-0.
release = 0.17.5
lang = vi
[translation]
origin_repo = d2l-ai/d2l-en
origin_lang = en
translator = aws
[build]
# A list of wildcards to indicate the markdown files that need to be evaluated as
# Jupyter notebooks.
notebooks = *.md */*.md
# A list of files that will be copied to the build folder.
resources = img/ d2l/ d2l.bib setup.py
# Files that will be skipped.
exclusions = README.md STYLE_GUIDE.md INFO.md CODE_OF_CONDUCT.md CONTRIBUTING.md contrib/*md **/*_en.md */*_origin.md
# If True (default), then will evaluate the notebook to obtain outputs.
eval_notebook = True
tabs = mxnet, pytorch, tensorflow
[html]
# A list of links that is displayed on the navbar. A link consists of three
# items: name, URL, and a fontawesome icon
# (https://fontawesome.com/icons?d=gallery). Items are separated by commas.
# PDF, http://numpy.d2l.ai/d2l-en.pdf, fas fa-file-pdf,
header_links = MXNet, https://vi.d2l.ai/d2l-vi.pdf, fas fa-file-pdf,
PyTorch, https://vi.d2l.ai/d2l-vi-pytorch.pdf, fas fa-file-pdf,
Notebooks, https://vi.d2l.ai/d2l-vi.zip, fas fa-download,
Courses, https://courses.d2l.ai, fas fa-user-graduate,
GitHub, https://github.com/d2l-ai/d2l-vi, fab fa-github,
English, https://d2l.ai, fas fa-external-link-alt
favicon = static/favicon.png
html_logo = static/logo-with-text.png
[pdf]
# The file used to post-process the generated tex file.
post_latex = ./static/post_latex/main.py
latex_logo = static/logo.png
bibfile = d2l.bib
[library]
version_file = d2l/__init__.py
[library-mxnet]
lib_file = d2l/mxnet.py
lib_name = np
# Map from d2l.xx to np.xx
simple_alias = ones, zeros, arange, meshgrid, sin, sinh, cos, cosh, tanh,
linspace, exp, log, tensor -> array, normal -> random.normal,
rand -> random.rand, matmul -> dot, int32, float32,
concat -> concatenate, stack, abs, eye
# Map from d2l.xx(a, *args, **kwargs) to a.xx(*args, **kwargs)
fluent_alias = numpy -> asnumpy, reshape, to -> as_in_context, reduce_sum -> sum,
argmax, astype
alias =
size = lambda a: a.size
transpose = lambda a: a.T
reverse_alias =
d2l.size\(([\w\_\d]+)\) -> \1.size
d2l.transpose\(([\w\_\d]+)\) -> \1.T
[library-pytorch]
lib_file = d2l/torch.py
lib_name = torch
simple_alias = ones, zeros, tensor, arange, meshgrid, sin, sinh, cos, cosh,
tanh, linspace, exp, log, normal, rand, matmul, int32, float32,
concat -> cat, stack, abs, eye
fluent_alias = numpy -> detach().numpy, size -> numel, reshape, to,
reduce_sum -> sum, argmax, astype -> type, transpose -> t
alias =
reverse_alias =
[library-tensorflow]
lib_file = d2l/tensorflow.py
lib_name = tf
simple_alias = reshape, ones, zeros, meshgrid, sin, sinh, cos, cosh, tanh,
linspace, exp, normal -> random.normal, rand -> random.uniform,
matmul, reduce_sum, argmax, tensor -> constant,
arange -> range, astype -> cast, int32, float32, transpose,
concat, stack, abs, eye
fluent_alias = numpy,
alias =
size = lambda a: tf.size(a).numpy()
reverse_alias =
d2l.size\(([\w\_\d]+)\) -> tf.size(\1).numpy()
[deploy]
google_analytics_tracking_id = UA-96378503-24