Skip to content

Failure in check_n_features_in_after_fitting in tests/test_kmeans.py::test_check_estimator #1010

@TomAugspurger

Description

@TomAugspurger

This is currently failing

tests/test_kmeans.py::test_check_estimator FAILED

=================================================================================================================== FAILURES ====================================================================================================================
_____________________________________________________________________________________________________________ test_check_estimator ______________________________________________________________________________________________________________

    def test_check_estimator():
        with warnings.catch_warnings(record=True):
            warnings.simplefilter("ignore", RuntimeWarning)
>           check_estimator(DKKMeans())

tests/test_kmeans.py:28:
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
../.venv/lib/python3.12/site-packages/sklearn/utils/_param_validation.py:216: in wrapper
    return func(*args, **kwargs)
../.venv/lib/python3.12/site-packages/sklearn/utils/estimator_checks.py:858: in check_estimator
    check(estimator)
../.venv/lib/python3.12/site-packages/sklearn/utils/_testing.py:147: in wrapper
    return fn(*args, **kwargs)
../.venv/lib/python3.12/site-packages/sklearn/utils/estimator_checks.py:4498: in check_n_features_in_after_fitting
    with raises(
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

self = <sklearn.utils._testing._Raises object at 0x1484e2ea0>, exc_type = None, exc_value = None, _ = None

    def __exit__(self, exc_type, exc_value, _):
        # see
        # https://docs.python.org/2.5/whatsnew/pep-343.html#SECTION000910000000000000000

        if exc_type is None:  # No exception was raised in the block
            if self.may_pass:
                return True  # CM is happy
            else:
                err_msg = self.err_msg or f"Did not raise: {self.expected_exc_types}"
>               raise AssertionError(err_msg)
E               AssertionError: `KMeans.predict()` does not check for consistency between input number
E               of features with KMeans.fit(), via the `n_features_in_` attribute.
E               You might want to use `sklearn.utils.validation.validate_data` instead
E               of `check_array` in `KMeans.fit()` and KMeans.predict()`. This can be done
E               like the following:
E               from sklearn.utils.validation import validate_data
E               ...
E               class MyEstimator(BaseEstimator):
E                   ...
E                   def fit(self, X, y):
E                       X, y = validate_data(self, X, y, ...)
E                       ...
E                       return self
E                   ...
E                   def predict(self, X):
E                       X = validate_data(self, X, ..., reset=False)
E                       ...
E                   return X

../.venv/lib/python3.12/site-packages/sklearn/utils/_testing.py:1097: AssertionError

#1008 is adding a skip for that particular check.

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions