The databricks-langchain
package provides seamless integration of Databricks AI features into LangChain applications. This repository is now the central hub for all Databricks-related LangChain components, consolidating previous packages such as langchain-databricks
and langchain-community
.
pip install databricks-langchain
pip install git+https://[email protected]/databricks/databricks-ai-bridge.git#subdirectory=integrations/langchain
- LLMs Integration: Use Databricks-hosted large language models (LLMs) like Llama and Mixtral through
ChatDatabricks
. - Vector Search: Store and query vector representations using
DatabricksVectorSearch
. - Embeddings: Generate embeddings with
DatabricksEmbeddings
. - Genie: Use Genie in Langchain.
from databricks_langchain import ChatDatabricks
llm = ChatDatabricks(endpoint="databricks-meta-llama-3-1-70b-instruct")
Note: Requires Genie API Private Preview. Contact your Databricks account team for enablement.
from databricks_langchain.genie import GenieAgent
genie_agent = GenieAgent(
"space-id", "Genie",
description="This Genie space has access to sales data in Europe"
)
We welcome contributions! Please see our contribution guidelines for details.
This project is licensed under the MIT License.
Thank you for using Databricks LangChain!