Skip to content

Not understanding the significance of 1e-7 in Grad-CAM++ implementation #18

@r0cketr1kky

Description

@r0cketr1kky

Hi,
Below is the code for Grad-CAM++ as implemented in this repository.
I don't understand why 1e-7 is added to the denominator out here alpha = alpha_num.div(alpha_denom + 1e-7).
Any reason for adding this term?

class GradCAMpp(GradCAM):
    """
        GradCAM++, inherit from BaseCAM
    """

    def __init__(self, model_dict):
        super(GradCAMpp, self).__init__(model_dict)

    def forward(self, input_image, class_idx=None, retain_graph=False):

        """Generates GradCAM++ result.
        # Arguments
            input_image: torch.Tensor. Preprocessed image with shape (1, C, H, W).
            class_idx: int. Index of target class. Defaults to be index of predicted class.
        # Return
            Result of GradCAM++ (torch.Tensor) with shape (1, H, W).
        """

        b, c, h, w = input_image.size()

        logit = self.model_arch(input_image)
        if class_idx is None:
            score = logit[:, logit.max(1)[-1]].squeeze()
        else:
            score = logit[:, class_idx].squeeze()

        
        if torch.cuda.is_available():
          score = score.cuda()
          logit = logit.cuda()

        self.model_arch.zero_grad()
        score.backward(retain_graph=retain_graph)
        gradients = self.gradients['value']
        activations = self.activations['value']
        b, k, u, v = gradients.size()

        if torch.cuda.is_available():
          activations = activations.cuda()
          gradients = gradients.cuda()
        
        alpha_num = gradients.pow(2)

        global_sum = activations.view(b, k, u * v).sum(-1, keepdim=True).view(b, k, 1, 1)
        alpha_denom = gradients.pow(2).mul(2) + global_sum.mul(gradients.pow(3))

        alpha_denom = torch.where(alpha_denom != 0.0, alpha_denom, torch.ones_like(alpha_denom))

        alpha = alpha_num.div(alpha_denom + 1e-7)
        positive_gradients = F.relu(score.exp() * gradients)
        weights = (alpha * positive_gradients).view(b, k, u * v).sum(-1).view(b, k, 1, 1)

        saliency_map = (weights * activations).sum(1, keepdim=True)
        saliency_map = F.relu(saliency_map)
        saliency_map = F.interpolate(saliency_map, size=(224, 224), mode='bilinear', align_corners=False)
        saliency_map_min, saliency_map_max = saliency_map.min(), saliency_map.max()
        saliency_map = (saliency_map - saliency_map_min).div(saliency_map_max - saliency_map_min).data

        return saliency_map

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions