Skip to content

Conditional independence tests with mixed data #8

Open
@kenneth-lee-ch

Description

@kenneth-lee-ch

Can someone show an example how to use this library to conduct conditional independence tests with mixed data? Suppose I have the following data. I am confused on how to use MutualInformation as it says it can take continuous and categorical data, but I got an error once I pass the df into it.

Set seed for reproducibility

Screenshot 2024-08-16 at 11 08 56 PM

import pandas as pd
import numpy as np
from pybnesian import MutualInformation

np.random.seed(42)

# Generate continuous data
data_size = 100
continuous_data_1 = np.random.normal(loc=50, scale=10, size=data_size)
continuous_data_2 = np.random.normal(loc=30, scale=5, size=data_size)

# Generate categorical data
categories = np.random.choice(['Category A', 'Category B', 'Category C'], size=data_size)

# Create DataFrame
df = pd.DataFrame({
    'Continuous_1': continuous_data_1,
    'Continuous_2': continuous_data_2,
    'Category': categories
})

kmi = MutualInformation(df=data)
Screenshot 2024-08-16 at 11 18 58 PM

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions