-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathann.py
88 lines (66 loc) · 2.65 KB
/
ann.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
# Artificial Neural Network
# Installing Theano
# pip install --upgrade --no-deps git+git://github.com/Theano/Theano.git
# Installing Tensorflow
# pip install tensorflow
# Installing Keras
# pip install --upgrade keras
# Part 1 - Data Preprocessing
# Importing the libraries
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
# Importing the dataset
dataset = pd.read_csv('Churn_Modelling.csv')
X = dataset.iloc[:, 3:13].values
y = dataset.iloc[:, 13].values
# Encoding categorical data
from sklearn.preprocessing import LabelEncoder, OneHotEncoder
labelencoder_X_1 = LabelEncoder()
X[:, 1] = labelencoder_X_1.fit_transform(X[:, 1])
labelencoder_X_2 = LabelEncoder()
X[:, 2] = labelencoder_X_2.fit_transform(X[:, 2])
onehotencoder = OneHotEncoder(categorical_features = [1])
X = onehotencoder.fit_transform(X).toarray()
X = X[:, 1:]
# Splitting the dataset into the Training set and Test set
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.2, random_state = 0)
# Feature Scaling
from sklearn.preprocessing import StandardScaler
sc = StandardScaler()
X_train = sc.fit_transform(X_train)
X_test = sc.transform(X_test)
# Part 2 - Now let's make the ANN!
# Importing the Keras libraries and packages
import keras
from keras.models import Sequential
from keras.layers import Dense
# Part 3 - Making predictions and evaluating the model
classifier=Sequential()
classifier.add(Dense(output_dim=6,input_dim=11,activation='relu',init='uniform')) #first hidden layer
classifier.add(Dense(output_dim=6,activation='relu',init='uniform')) #second hidden layer
classifier.add(Dense(output_dim=1,activation='sigmoid',init='uniform')) #second hidden layer
# working on weights and cost fucntion
classifier.compile(optimizer='adam',loss='binary_crossentropy',metrics=['accuracy'])
classifier.fit(X_train,y_train,batch_size=10,nb_epoch=50)
# Predicting the Test set results
y_pred = classifier.predict(X_test) #returns probability
y_pred = (y_pred > 0.5) #returns true or false
# Predicting a single new observation
"""Predict if the customer with the following informations will leave the bank:
Geography: France
Credit Score: 600
Gender: Male
Age: 40
Tenure: 3
Balance: 60000
Number of Products: 2
Has Credit Card: Yes
Is Active Member: Yes
Estimated Salary: 50000"""
new_prediction = classifier.predict(sc.transform(np.array([[0.0, 0, 600, 1, 40, 3, 60000, 2, 1, 1, 50000]])))
new_prediction = (new_prediction > 0.5)
# Making the Confusion Matrix to validate....... total correct/ total models = accuracy
from sklearn.metrics import confusion_matrix
cm = confusion_matrix(y_test, y_pred)