In this projects we'll implementing agents that learns to play Unity Walker using several Deep Rl algorithms. Unity Ml Agents is a toolkit for developing and comparing reinforcement learning algorithms. We'll be using pytorch library for the implementation.
- Unity Ml Agents
- PyTorch
- numpy
- matplotlib
- Set-up: Physics-based Humanoids agents with 26 degrees of freedom. These DOFs correspond to articulation of the following body-parts: hips, chest, spine, head, thighs, shins, feet, arms, forearms and hands.
- Goal: The agents must move its body toward the goal direction as quickly as possible without falling.
- Agents: The environment contains 11 independent agents with same Behavior Parameters.
- Agent Reward Function (independent):
- +0.03 times body velocity in the goal direction.
- +0.01 times head y position.
- +0.01 times body direction alignment with goal direction.
- -0.01 times head velocity difference from body velocity.
- Behavior Parameters:
- Vector Observation space: 215 variables corresponding to position, rotation, velocity, and angular velocities of each limb, along with goal direction.
- Vector Action space: (Continuous) Size of 39, corresponding to target rotations applicable to the joints.
- Visual Observations: None
- Float Properties: Four
- gravity: Magnitude of gravity
- Default: 9.81
- Recommended Minimum:
- Recommended Maximum:
- hip_mass: Mass of the hip component of the walker
- Default: 15
- Recommended Minimum: 7
- Recommended Maximum: 28
- chest_mass: Mass of the chest component of the walker
- Default: 8
- Recommended Minimum: 3
- Recommended Maximum: 20
- spine_mass: Mass of the spine component of the walker
- Default: 10
- Recommended Minimum: 3
- Recommended Maximum: 20
- gravity: Magnitude of gravity
- Benchmark Mean Reward: 1000
If you have any questions, feel free to ask me:
- Mail: [email protected]
- Github: https://github.com/deepanshut041/Reinforcement-Learning
- Website: https://deepanshut041.github.io/Reinforcement-Learning
- Twitter: @deepanshut041
Don't forget to follow me on twitter, github and Medium to be alerted of the new articles that I publish
- Clap on articles: Clapping in Medium means that you really like my articles. And the more claps I have, the more my article is shared help them to be much more visible to the deep learning community.
- Improve our notebooks: if you found a bug or a better implementation you can send a pull request.