@@ -61,47 +61,63 @@ For **ICCV2021-MFR-ALL** set, TAR is measured on all-to-all 1:1 protocal, with F
61
61
globalised multi-racial testset contains 242,143 identities and 1,624,305 images.
62
62
63
63
64
- > 1 . Large Scale Datasets
65
-
66
- | Datasets | Backbone | ** MFR-ALL** | IJB-C(1E-4) | IJB-C(1E-5) | Training Throughout | log |
67
- | :-----------------| :------------| :------------| :------------| :------------| :--------------------| :------------------------------------------------------------------------------------------------------------------------------------------------|
68
- | MS1MV3 | mobileface | 65.76 | 94.44 | 91.85 | ~ 13000 | [ click me] ( https://raw.githubusercontent.com/anxiangsir/insightface_arcface_log/master/ms1mv3_mobileface_lr02/training.log ) |
69
- | Glint360K | mobileface | 69.83 | 95.17 | 92.58 | -11000 | [ click me] ( https://raw.githubusercontent.com/anxiangsir/insightface_arcface_log/master/glint360k_mobileface_lr02_bs4k/training.log ) |
70
- | WF42M-PFC-0.2 | mobileface | 73.80 | 95.40 | 92.64 | (16GPUs)~ 18583 | [ click me] ( https://raw.githubusercontent.com/anxiangsir/insightface_arcface_log/master/webface42m_mobilefacenet_pfc02_bs8k_16gpus/training.log ) |
71
- | MS1MV3 | r100 | 83.23 | 96.88 | 95.31 | ~ 3400 | [ click me] ( https://raw.githubusercontent.com/anxiangsir/insightface_arcface_log/master/ms1mv3_r100_lr02/training.log ) |
72
- | Glint360K | r100 | 90.86 | 97.53 | 96.43 | ~ 5000 | [ click me] ( https://raw.githubusercontent.com/anxiangsir/insightface_arcface_log/master/glint360k_r100_lr02_bs4k_16gpus/training.log ) |
73
- | WF42M-PFC-0.2 | r50(bs4k) | 93.83 | 97.53 | 96.16 | (8 GPUs)~ 5900 | [ click me] ( https://raw.githubusercontent.com/anxiangsir/insightface_arcface_log/master/webface42m_r50_bs4k_pfc02/training.log ) |
74
- | WF42M-PFC-0.2 | r50(bs8k) | 93.96 | 97.46 | 96.12 | (16GPUs)~ 11000 | [ click me] ( https://raw.githubusercontent.com/anxiangsir/insightface_arcface_log/master/webface42m_r50_lr01_pfc02_bs8k_16gpus/training.log ) |
75
- | WF42M-PFC-0.2 | r50(bs4k) | 94.04 | 97.48 | 95.94 | (32GPUs)~ 17000 | click me |
76
- | WF42M-PFC-0.0018 | r100(bs16k) | 93.08 | 97.51 | 95.88 | (32GPUs)~ 10000 | click me |
77
- | WF42M-PFC-0.2 | r100(bs4k) | 96.69 | 97.85 | 96.63 | (16GPUs)~ 5200 | [ click me] ( https://raw.githubusercontent.com/anxiangsir/insightface_arcface_log/master/webface42m_r100_bs4k_pfc02/training.log ) |
78
-
79
- > 2 . VIT For Face Recognition
80
-
81
- | Datasets | Backbone | FLOPs | ** MFR-ALL** | IJB-C(1E-4) | IJB-C(1E-5) | Training Throughout | log |
82
- | :--------------| :-------------| :------| :------------| :------------| :------------| :--------------------| :---------|
83
- | WF42M-PFC-0.3 | R18(bs4k) | 2.6 | 79.13 | 95.77 | 93.36 | - | click me |
84
- | WF42M-PFC-0.3 | R50(bs4k) | 6.3 | 94.03 | 97.48 | 95.94 | - | click me |
85
- | WF42M-PFC-0.3 | R100(bs4k) | 12.1 | 96.69 | 97.82 | 96.45 | - | click me |
86
- | WF42M-PFC-0.3 | R200(bs4k) | 23.5 | 97.70 | 97.97 | 96.93 | - | click me |
87
- | WF42M-PFC-0.3 | VIT-T(bs24k) | 1.5 | 92.24 | 97.31 | 95.97 | (64GPUs)~ 35000 | click me |
88
- | WF42M-PFC-0.3 | VIT-S(bs24k) | 5.7 | 95.87 | 97.73 | 96.57 | (64GPUs)~ 25000 | click me |
89
- | WF42M-PFC-0.3 | VIT-B(bs24k) | 11.4 | 97.42 | 97.90 | 97.04 | (64GPUs)~ 13800 | click me |
90
- | WF42M-PFC-0.3 | VIT-L(bs24k) | 25.3 | 97.85 | 98.00 | 97.23 | (64GPUs)~ 9406 | click me |
91
-
92
- WF42M means WebFace42M, ` PFC-0.3 ` means negivate class centers sample rate is 0.3.
93
-
94
- > 3 . Noisy Datasets
64
+ #### 1. Training on Single-Host GPU
65
+
66
+ | Datasets | Backbone | ** MFR-ALL** | IJB-C(1E-4) | IJB-C(1E-5) | log |
67
+ | :--------------| :--------------------| :------------| :------------| :------------| :---------|
68
+ | MS1MV2 | mobilefacenet-0.45G | 62.07 | 93.61 | 90.28 | [ click me] ( https://raw.githubusercontent.com/anxiangsir/insightface_arcface_log/master/ms1mv2_mbf/training.log ) |
69
+ | MS1MV2 | r50 | 70.35 | 95.43 | 93.34 | [ click me] ( https://raw.githubusercontent.com/anxiangsir/insightface_arcface_log/master/ms1mv2_r50/training.log ) |
70
+ | MS1MV2 | r100 | 69.79 | 95.85 | 93.93 | [ click me] ( https://raw.githubusercontent.com/anxiangsir/insightface_arcface_log/master/ms1mv2_r100/training.log ) |
71
+ | MS1MV3 | mobilefacenet-0.45G | 63.78 | 94.23 | 91.33 | [ click me] ( https://raw.githubusercontent.com/anxiangsir/insightface_arcface_log/master/ms1mv3_mbf/training.log ) |
72
+ | MS1MV3 | r50 | 79.14 | 96.37 | 94.47 | [ click me] ( https://raw.githubusercontent.com/anxiangsir/insightface_arcface_log/master/ms1mv3_r50/training.log ) |
73
+ | MS1MV3 | r100 | 81.97 | 96.85 | 95.02 | [ click me] ( https://raw.githubusercontent.com/anxiangsir/insightface_arcface_log/master/ms1mv3_r100/training.log ) |
74
+ | Glint360K | mobilefacenet-0.45G | 70.18 | 95.04 | 92.62 | [ click me] ( https://raw.githubusercontent.com/anxiangsir/insightface_arcface_log/master/glint360k_mbf/training.log ) |
75
+ | Glint360K | r50 | 86.34 | 97.16 | 95.81 | [ click me] ( https://raw.githubusercontent.com/anxiangsir/insightface_arcface_log/master/glint360k_r50/training.log ) |
76
+ | Glint360k | r100 | 89.52 | 97.55 | 96.38 | [ click me] ( https://raw.githubusercontent.com/anxiangsir/insightface_arcface_log/master/glint360k_r100/training.log ) |
77
+ | WF42M-PFC-0.2 | ViT-T-1.5G | 92.04 | 97.27 | 95.68 | [ click me] ( https://raw.githubusercontent.com/anxiangsir/insightface_arcface_log/master/wf42m_pfc02_40epoch_8gpu_vit_t/training.log ) |
78
+ | WF42M-PFC-0.2 | R100 | 96.27 | 97.70 | 96.31 | [ click me] ( https://raw.githubusercontent.com/anxiangsir/insightface_arcface_log/master/wf42m_pfc02_r100/training.log ) |
79
+
80
+ #### 2. Training on Multi-Host GPU
81
+
82
+ | Datasets | Backbone(bs* gpus) | ** MFR-ALL** | IJB-C(1E-4) | IJB-C(1E-5) | Throughout | log |
83
+ | :-----------------| :------------------| :------------| :------------| :------------| :-----------| :-------------------------------------------------------------------------------------------------------------------------------------------|
84
+ | WF42M-PFC-0.2 | r50(512* 8) | 93.83 | 97.53 | 96.16 | ~ 5900 | [ click me] ( https://raw.githubusercontent.com/anxiangsir/insightface_arcface_log/master/webface42m_r50_bs4k_pfc02/training.log ) |
85
+ | WF42M-PFC-0.2 | r50(512* 16) | 93.96 | 97.46 | 96.12 | ~ 11000 | [ click me] ( https://raw.githubusercontent.com/anxiangsir/insightface_arcface_log/master/webface42m_r50_lr01_pfc02_bs8k_16gpus/training.log ) |
86
+ | WF42M-PFC-0.2 | r50(128* 32) | 94.04 | 97.48 | 95.94 | ~ 17000 | click me |
87
+ | WF42M-PFC-0.2 | r100(128* 16) | 96.28 | 97.80 | 96.57 | ~ 5200 | click me |
88
+ | WF42M-PFC-0.2 | r100(256* 16) | 96.69 | 97.85 | 96.63 | ~ 5200 | [ click me] ( https://raw.githubusercontent.com/anxiangsir/insightface_arcface_log/master/webface42m_r100_bs4k_pfc02/training.log ) |
89
+ | WF42M-PFC-0.0018 | r100(512* 32) | 93.08 | 97.51 | 95.88 | ~ 10000 | click me |
90
+ | WF42M-PFC-0.2 | r100(128* 32) | 96.57 | 97.83 | 96.50 | ~ 9800 | click me |
91
+
92
+ ` r100(128*32) ` means backbone is r100, batchsize per gpu is 128, the number of gpus is 32.
93
+
94
+
95
+
96
+ #### 3. ViT For Face Recognition
97
+
98
+ | Datasets | Backbone(bs) | FLOPs | ** MFR-ALL** | IJB-C(1E-4) | IJB-C(1E-5) | Throughout | log |
99
+ | :--------------| :--------------| :------| :------------| :------------| :------------| :-----------| :-----------------------------------------------------------------------------------------------------------------------------|
100
+ | WF42M-PFC-0.3 | r18(128* 32) | 2.6 | 79.13 | 95.77 | 93.36 | - | click me |
101
+ | WF42M-PFC-0.3 | r50(128* 32) | 6.3 | 94.03 | 97.48 | 95.94 | - | click me |
102
+ | WF42M-PFC-0.3 | r100(128* 32) | 12.1 | 96.69 | 97.82 | 96.45 | - | click me |
103
+ | WF42M-PFC-0.3 | r200(128* 32) | 23.5 | 97.70 | 97.97 | 96.93 | - | click me |
104
+ | WF42M-PFC-0.3 | VIT-T(384* 64) | 1.5 | 92.24 | 97.31 | 95.97 | ~ 35000 | click me |
105
+ | WF42M-PFC-0.3 | VIT-S(384* 64) | 5.7 | 95.87 | 97.73 | 96.57 | ~ 25000 | [ click me] ( https://raw.githubusercontent.com/anxiangsir/insightface_arcface_log/master/pfc03_wf42m_vit_s_64gpu/training.log ) |
106
+ | WF42M-PFC-0.3 | VIT-B(384* 64) | 11.4 | 97.42 | 97.90 | 97.04 | ~ 13800 | [ click me] ( https://raw.githubusercontent.com/anxiangsir/insightface_arcface_log/master/pfc03_wf42m_vit_b_64gpu/training.log ) |
107
+ | WF42M-PFC-0.3 | VIT-L(384* 64) | 25.3 | 97.85 | 98.00 | 97.23 | ~ 9406 | [ click me] ( https://raw.githubusercontent.com/anxiangsir/insightface_arcface_log/master/pfc03_wf42m_vit_l_64gpu/training.log ) |
108
+
109
+ ` WF42M ` means WebFace42M, ` PFC-0.3 ` means negivate class centers sample rate is 0.3.
110
+
111
+ #### 4. Noisy Datasets
95
112
96
113
| Datasets | Backbone | ** MFR-ALL** | IJB-C(1E-4) | IJB-C(1E-5) | log |
97
114
| :-------------------------| :---------| :------------| :------------| :------------| :---------|
98
- | WF12M-Flip(40%) | R50 | 43.87 | 88.35 | 80.78 | click me |
99
- | WF12M-Flip(40%)-PFC-0.3* | R50 | 80.20 | 96.11 | 93.79 | click me |
100
- | WF12M-Conflict | R50 | 79.93 | 95.30 | 91.56 | click me |
101
- | WF12M-Conflict-PFC-0.3* | R50 | 91.68 | 97.28 | 95.75 | click me |
102
-
103
- WF12M means WebFace12M, ` +PFC-0.3* ` denotes additional abnormal inter-class filtering.
115
+ | WF12M-Flip(40%) | r50 | 43.87 | 88.35 | 80.78 | click me |
116
+ | WF12M-Flip(40%)-PFC-0.1* | r50 | 80.20 | 96.11 | 93.79 | click me |
117
+ | WF12M-Conflict | r50 | 79.93 | 95.30 | 91.56 | click me |
118
+ | WF12M-Conflict-PFC-0.3* | r50 | 91.68 | 97.28 | 95.75 | click me |
104
119
120
+ ` WF12M ` means WebFace12M, ` +PFC-0.1* ` denotes additional abnormal inter-class filtering.
105
121
106
122
107
123
0 commit comments