|
| 1 | +# SPDX-License-Identifier: LGPL-3.0-or-later |
| 2 | +import json |
| 3 | +import os |
| 4 | +import unittest |
| 5 | +from pathlib import ( |
| 6 | + Path, |
| 7 | +) |
| 8 | + |
| 9 | +import numpy as np |
| 10 | + |
| 11 | +from deepmd.pt.entrypoints.main import ( |
| 12 | + get_trainer, |
| 13 | +) |
| 14 | +from deepmd.pt.modifier.base_modifier import ( |
| 15 | + BaseModifier, |
| 16 | +) |
| 17 | +from deepmd.pt.utils.utils import ( |
| 18 | + to_numpy_array, |
| 19 | +) |
| 20 | +from deepmd.utils.argcheck import ( |
| 21 | + modifier_args_plugin, |
| 22 | +) |
| 23 | +from deepmd.utils.data import ( |
| 24 | + DeepmdData, |
| 25 | +) |
| 26 | + |
| 27 | + |
| 28 | +@modifier_args_plugin.register("random_tester") |
| 29 | +def modifier_random_tester() -> list: |
| 30 | + return [] |
| 31 | + |
| 32 | + |
| 33 | +@modifier_args_plugin.register("zero_tester") |
| 34 | +def modifier_zero_tester() -> list: |
| 35 | + return [] |
| 36 | + |
| 37 | + |
| 38 | +@BaseModifier.register("random_tester") |
| 39 | +class ModifierRandomTester(BaseModifier): |
| 40 | + def __new__(cls) -> BaseModifier: |
| 41 | + return super().__new__(cls) |
| 42 | + |
| 43 | + def __init__(self) -> None: |
| 44 | + """Construct a basic model for different tasks.""" |
| 45 | + super().__init__() |
| 46 | + self.modifier_type = "tester" |
| 47 | + |
| 48 | + def serialize(self) -> dict: |
| 49 | + """Serialize the modifier. |
| 50 | +
|
| 51 | + Returns |
| 52 | + ------- |
| 53 | + dict |
| 54 | + The serialized data |
| 55 | + """ |
| 56 | + data = { |
| 57 | + "@class": "Modifier", |
| 58 | + "type": self.modifier_type, |
| 59 | + "@version": 3, |
| 60 | + } |
| 61 | + return data |
| 62 | + |
| 63 | + @classmethod |
| 64 | + def deserialize(cls, data: dict) -> "BaseModifier": |
| 65 | + """Deserialize the modifier. |
| 66 | +
|
| 67 | + Parameters |
| 68 | + ---------- |
| 69 | + data : dict |
| 70 | + The serialized data |
| 71 | +
|
| 72 | + Returns |
| 73 | + ------- |
| 74 | + BaseModifier |
| 75 | + The deserialized modifier |
| 76 | + """ |
| 77 | + data = data.copy() |
| 78 | + modifier = cls(**data) |
| 79 | + return modifier |
| 80 | + |
| 81 | + def modify_data(self, data: dict, data_sys: DeepmdData) -> None: |
| 82 | + """Multiply by a random factor.""" |
| 83 | + if ( |
| 84 | + "find_energy" not in data |
| 85 | + and "find_force" not in data |
| 86 | + and "find_virial" not in data |
| 87 | + ): |
| 88 | + return |
| 89 | + |
| 90 | + if "find_energy" in data and data["find_energy"] == 1.0: |
| 91 | + data["energy"] = data["energy"] * np.random.Generator() |
| 92 | + if "find_force" in data and data["find_force"] == 1.0: |
| 93 | + data["force"] = data["force"] * np.random.Generator() |
| 94 | + if "find_virial" in data and data["find_virial"] == 1.0: |
| 95 | + data["virial"] = data["virial"] * np.random.Generator() |
| 96 | + |
| 97 | + |
| 98 | +@BaseModifier.register("zero_tester") |
| 99 | +class ModifierZeroTester(BaseModifier): |
| 100 | + def __new__(cls) -> BaseModifier: |
| 101 | + return super().__new__(cls) |
| 102 | + |
| 103 | + def __init__(self) -> None: |
| 104 | + """Construct a basic model for different tasks.""" |
| 105 | + super().__init__() |
| 106 | + self.modifier_type = "tester" |
| 107 | + |
| 108 | + def serialize(self) -> dict: |
| 109 | + """Serialize the modifier. |
| 110 | +
|
| 111 | + Returns |
| 112 | + ------- |
| 113 | + dict |
| 114 | + The serialized data |
| 115 | + """ |
| 116 | + data = { |
| 117 | + "@class": "Modifier", |
| 118 | + "type": self.modifier_type, |
| 119 | + "@version": 3, |
| 120 | + } |
| 121 | + return data |
| 122 | + |
| 123 | + @classmethod |
| 124 | + def deserialize(cls, data: dict) -> "BaseModifier": |
| 125 | + """Deserialize the modifier. |
| 126 | +
|
| 127 | + Parameters |
| 128 | + ---------- |
| 129 | + data : dict |
| 130 | + The serialized data |
| 131 | +
|
| 132 | + Returns |
| 133 | + ------- |
| 134 | + BaseModifier |
| 135 | + The deserialized modifier |
| 136 | + """ |
| 137 | + data = data.copy() |
| 138 | + modifier = cls(**data) |
| 139 | + return modifier |
| 140 | + |
| 141 | + def modify_data(self, data: dict, data_sys: DeepmdData) -> None: |
| 142 | + """Multiply by a random factor.""" |
| 143 | + if ( |
| 144 | + "find_energy" not in data |
| 145 | + and "find_force" not in data |
| 146 | + and "find_virial" not in data |
| 147 | + ): |
| 148 | + return |
| 149 | + |
| 150 | + if "find_energy" in data and data["find_energy"] == 1.0: |
| 151 | + data["energy"] -= data["energy"] |
| 152 | + if "find_force" in data and data["find_force"] == 1.0: |
| 153 | + data["force"] -= data["force"] |
| 154 | + if "find_virial" in data and data["find_virial"] == 1.0: |
| 155 | + data["virial"] -= data["virial"] |
| 156 | + |
| 157 | + |
| 158 | +class TestDataModifier(unittest.TestCase): |
| 159 | + def setUp(self) -> None: |
| 160 | + """Set up test fixtures.""" |
| 161 | + input_json = str(Path(__file__).parent / "water/se_e2_a.json") |
| 162 | + with open(input_json, encoding="utf-8") as f: |
| 163 | + config = json.load(f) |
| 164 | + config["training"]["numb_steps"] = 10 |
| 165 | + config["training"]["save_freq"] = 1 |
| 166 | + config["learning_rate"]["start_lr"] = 1.0 |
| 167 | + config["training"]["training_data"]["systems"] = [ |
| 168 | + str(Path(__file__).parent / "water/data/single") |
| 169 | + ] |
| 170 | + config["training"]["validation_data"]["systems"] = [ |
| 171 | + str(Path(__file__).parent / "water/data/single") |
| 172 | + ] |
| 173 | + self.config = config |
| 174 | + |
| 175 | + def test_init_modify_data(self): |
| 176 | + """Ensure modify_data applied.""" |
| 177 | + tmp_config = self.config.copy() |
| 178 | + # add tester data modifier |
| 179 | + tmp_config["model"]["modifier"] = {"type": "zero_tester"} |
| 180 | + |
| 181 | + # data modification is finished in __init__ |
| 182 | + trainer = get_trainer(tmp_config) |
| 183 | + |
| 184 | + # training data |
| 185 | + training_data = trainer.get_data(is_train=True) |
| 186 | + # validation data |
| 187 | + validation_data = trainer.get_data(is_train=False) |
| 188 | + |
| 189 | + for dataset in [training_data, validation_data]: |
| 190 | + for kw in ["energy", "force"]: |
| 191 | + data = to_numpy_array(dataset[1][kw]) |
| 192 | + np.testing.assert_allclose(data, np.zeros_like(data)) |
| 193 | + |
| 194 | + def test_full_modify_data(self): |
| 195 | + """Ensure modify_data only applied once.""" |
| 196 | + tmp_config = self.config.copy() |
| 197 | + # add tester data modifier |
| 198 | + tmp_config["model"]["modifier"] = {"type": "random_tester"} |
| 199 | + |
| 200 | + # data modification is finished in __init__ |
| 201 | + trainer = get_trainer(tmp_config) |
| 202 | + |
| 203 | + # training data |
| 204 | + training_data_before = trainer.get_data(is_train=True) |
| 205 | + # validation data |
| 206 | + validation_data_before = trainer.get_data(is_train=False) |
| 207 | + |
| 208 | + trainer.run() |
| 209 | + |
| 210 | + # training data |
| 211 | + training_data_after = trainer.get_data(is_train=True) |
| 212 | + # validation data |
| 213 | + validation_data_after = trainer.get_data(is_train=False) |
| 214 | + |
| 215 | + for kw in ["energy", "force"]: |
| 216 | + np.testing.assert_allclose( |
| 217 | + to_numpy_array(training_data_before[1][kw]), |
| 218 | + to_numpy_array(training_data_after[1][kw]), |
| 219 | + ) |
| 220 | + np.testing.assert_allclose( |
| 221 | + to_numpy_array(validation_data_before[1][kw]), |
| 222 | + to_numpy_array(validation_data_after[1][kw]), |
| 223 | + ) |
| 224 | + |
| 225 | + def tearDown(self) -> None: |
| 226 | + for f in os.listdir("."): |
| 227 | + if f.startswith("frozen_model") and f.endswith(".pth"): |
| 228 | + os.remove(f) |
| 229 | + if f.startswith("model") and f.endswith(".pt"): |
| 230 | + os.remove(f) |
| 231 | + if f in ["lcurve.out", "checkpoint"]: |
| 232 | + os.remove(f) |
0 commit comments