Description
I did a small fine-tuning and the process finishes correctly. The output model is too small though and there are no weights. The list of the files is this
config.json
generation_config.json
model.safetensors (around 250 MiB)
runs/
special_tokens_map.json
tokenizer.json
tokenizer_config.json
trainer_state.json
training_args.bin
Im using the same command that you suggest:
deepspeed finetune_deepseekcoder.py
--model_name_or_path $MODEL_PATH
--data_path $DATA_PATH
--output_dir $OUTPUT_PATH
--num_train_epochs 3
--model_max_length 1024
--per_device_train_batch_size 16
--per_device_eval_batch_size 1
--gradient_accumulation_steps 4
--evaluation_strategy "no"
--save_strategy "steps"
--save_steps 100
--save_total_limit 100
--learning_rate 2e-5
--warmup_steps 10
--logging_steps 1
--lr_scheduler_type "cosine"
--gradient_checkpointing True
--report_to "tensorboard"
--deepspeed configs/ds_config_zero3.json
--bf16 True
Could you also give an example on how to use the output model?