-
Notifications
You must be signed in to change notification settings - Fork 58
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Implement row group skipping for the default engine parquet readers (#…
…362) Previous PR #357 implemented the logic of stats-based skipping for a parquet reader, but in abstract form that doesn't actually depend on parquet footers. With that in place, we can now wire up the kernel default parquet readers to use row group skipping. Also fixes #380.
- Loading branch information
Showing
9 changed files
with
793 additions
and
29 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,244 @@ | ||
//! An implementation of parquet row group skipping using data skipping predicates over footer stats. | ||
use crate::engine::parquet_stats_skipping::{col_name_to_path, ParquetStatsSkippingFilter}; | ||
use crate::expressions::{Expression, Scalar}; | ||
use crate::schema::{DataType, PrimitiveType}; | ||
use chrono::{DateTime, Days}; | ||
use parquet::arrow::arrow_reader::ArrowReaderBuilder; | ||
use parquet::file::metadata::RowGroupMetaData; | ||
use parquet::file::statistics::Statistics; | ||
use parquet::schema::types::{ColumnDescPtr, ColumnPath}; | ||
use std::collections::{HashMap, HashSet}; | ||
use tracing::debug; | ||
|
||
#[cfg(test)] | ||
mod tests; | ||
|
||
/// An extension trait for [`ArrowReaderBuilder`] that injects row group skipping capability. | ||
pub(crate) trait ParquetRowGroupSkipping { | ||
/// Instructs the parquet reader to perform row group skipping, eliminating any row group whose | ||
/// stats prove that none of the group's rows can satisfy the given `predicate`. | ||
fn with_row_group_filter(self, predicate: &Expression) -> Self; | ||
} | ||
impl<T> ParquetRowGroupSkipping for ArrowReaderBuilder<T> { | ||
fn with_row_group_filter(self, predicate: &Expression) -> Self { | ||
let indices = self | ||
.metadata() | ||
.row_groups() | ||
.iter() | ||
.enumerate() | ||
.filter_map(|(index, row_group)| { | ||
// If the group survives the filter, return Some(index) so filter_map keeps it. | ||
RowGroupFilter::apply(row_group, predicate).then_some(index) | ||
}) | ||
.collect(); | ||
debug!("with_row_group_filter({predicate:#?}) = {indices:?})"); | ||
self.with_row_groups(indices) | ||
} | ||
} | ||
|
||
/// A ParquetStatsSkippingFilter for row group skipping. It obtains stats from a parquet | ||
/// [`RowGroupMetaData`] and pre-computes the mapping of each referenced column path to its | ||
/// corresponding field index, for O(1) stats lookups. | ||
struct RowGroupFilter<'a> { | ||
row_group: &'a RowGroupMetaData, | ||
field_indices: HashMap<ColumnPath, usize>, | ||
} | ||
|
||
impl<'a> RowGroupFilter<'a> { | ||
/// Creates a new row group filter for the given row group and predicate. | ||
fn new(row_group: &'a RowGroupMetaData, predicate: &Expression) -> Self { | ||
Self { | ||
row_group, | ||
field_indices: compute_field_indices(row_group.schema_descr().columns(), predicate), | ||
} | ||
} | ||
|
||
/// Applies a filtering predicate to a row group. Return value false means to skip it. | ||
fn apply(row_group: &'a RowGroupMetaData, predicate: &Expression) -> bool { | ||
RowGroupFilter::new(row_group, predicate).apply_sql_where(predicate) != Some(false) | ||
} | ||
|
||
/// Returns `None` if the column doesn't exist and `Some(None)` if the column has no stats. | ||
fn get_stats(&self, col: &ColumnPath) -> Option<Option<&Statistics>> { | ||
self.field_indices | ||
.get(col) | ||
.map(|&i| self.row_group.column(i).statistics()) | ||
} | ||
|
||
fn decimal_from_bytes(bytes: Option<&[u8]>, precision: u8, scale: u8) -> Option<Scalar> { | ||
// WARNING: The bytes are stored in big-endian order; reverse and then 0-pad to 16 bytes. | ||
let bytes = bytes.filter(|b| b.len() <= 16)?; | ||
let mut bytes = Vec::from(bytes); | ||
bytes.reverse(); | ||
bytes.resize(16, 0u8); | ||
let bytes: [u8; 16] = bytes.try_into().ok()?; | ||
Some(Scalar::Decimal( | ||
i128::from_le_bytes(bytes), | ||
precision, | ||
scale, | ||
)) | ||
} | ||
|
||
fn timestamp_from_date(days: Option<&i32>) -> Option<Scalar> { | ||
let days = u64::try_from(*days?).ok()?; | ||
let timestamp = DateTime::UNIX_EPOCH.checked_add_days(Days::new(days))?; | ||
let timestamp = timestamp.signed_duration_since(DateTime::UNIX_EPOCH); | ||
Some(Scalar::TimestampNtz(timestamp.num_microseconds()?)) | ||
} | ||
} | ||
|
||
impl<'a> ParquetStatsSkippingFilter for RowGroupFilter<'a> { | ||
// Extracts a stat value, converting from its physical type to the requested logical type. | ||
// | ||
// NOTE: This code is highly redundant with [`get_max_stat_value`] below, but parquet | ||
// ValueStatistics<T> requires T to impl a private trait, so we can't factor out any kind of | ||
// helper method. And macros are hard enough to read that it's not worth defining one. | ||
fn get_min_stat_value(&self, col: &ColumnPath, data_type: &DataType) -> Option<Scalar> { | ||
use PrimitiveType::*; | ||
let value = match (data_type.as_primitive_opt()?, self.get_stats(col)??) { | ||
(String, Statistics::ByteArray(s)) => s.min_opt()?.as_utf8().ok()?.into(), | ||
(String, Statistics::FixedLenByteArray(s)) => s.min_opt()?.as_utf8().ok()?.into(), | ||
(String, _) => return None, | ||
(Long, Statistics::Int64(s)) => s.min_opt()?.into(), | ||
(Long, Statistics::Int32(s)) => (*s.min_opt()? as i64).into(), | ||
(Long, _) => return None, | ||
(Integer, Statistics::Int32(s)) => s.min_opt()?.into(), | ||
(Integer, _) => return None, | ||
(Short, Statistics::Int32(s)) => (*s.min_opt()? as i16).into(), | ||
(Short, _) => return None, | ||
(Byte, Statistics::Int32(s)) => (*s.min_opt()? as i8).into(), | ||
(Byte, _) => return None, | ||
(Float, Statistics::Float(s)) => s.min_opt()?.into(), | ||
(Float, _) => return None, | ||
(Double, Statistics::Double(s)) => s.min_opt()?.into(), | ||
(Double, Statistics::Float(s)) => (*s.min_opt()? as f64).into(), | ||
(Double, _) => return None, | ||
(Boolean, Statistics::Boolean(s)) => s.min_opt()?.into(), | ||
(Boolean, _) => return None, | ||
(Binary, Statistics::ByteArray(s)) => s.min_opt()?.data().into(), | ||
(Binary, Statistics::FixedLenByteArray(s)) => s.min_opt()?.data().into(), | ||
(Binary, _) => return None, | ||
(Date, Statistics::Int32(s)) => Scalar::Date(*s.min_opt()?), | ||
(Date, _) => return None, | ||
(Timestamp, Statistics::Int64(s)) => Scalar::Timestamp(*s.min_opt()?), | ||
(Timestamp, _) => return None, // TODO: Int96 timestamps | ||
(TimestampNtz, Statistics::Int64(s)) => Scalar::TimestampNtz(*s.min_opt()?), | ||
(TimestampNtz, Statistics::Int32(s)) => Self::timestamp_from_date(s.min_opt())?, | ||
(TimestampNtz, _) => return None, // TODO: Int96 timestamps | ||
(Decimal(p, s), Statistics::Int32(i)) => Scalar::Decimal(*i.min_opt()? as i128, *p, *s), | ||
(Decimal(p, s), Statistics::Int64(i)) => Scalar::Decimal(*i.min_opt()? as i128, *p, *s), | ||
(Decimal(p, s), Statistics::FixedLenByteArray(b)) => { | ||
Self::decimal_from_bytes(b.min_bytes_opt(), *p, *s)? | ||
} | ||
(Decimal(..), _) => return None, | ||
}; | ||
Some(value) | ||
} | ||
|
||
fn get_max_stat_value(&self, col: &ColumnPath, data_type: &DataType) -> Option<Scalar> { | ||
use PrimitiveType::*; | ||
let value = match (data_type.as_primitive_opt()?, self.get_stats(col)??) { | ||
(String, Statistics::ByteArray(s)) => s.max_opt()?.as_utf8().ok()?.into(), | ||
(String, Statistics::FixedLenByteArray(s)) => s.max_opt()?.as_utf8().ok()?.into(), | ||
(String, _) => return None, | ||
(Long, Statistics::Int64(s)) => s.max_opt()?.into(), | ||
(Long, Statistics::Int32(s)) => (*s.max_opt()? as i64).into(), | ||
(Long, _) => return None, | ||
(Integer, Statistics::Int32(s)) => s.max_opt()?.into(), | ||
(Integer, _) => return None, | ||
(Short, Statistics::Int32(s)) => (*s.max_opt()? as i16).into(), | ||
(Short, _) => return None, | ||
(Byte, Statistics::Int32(s)) => (*s.max_opt()? as i8).into(), | ||
(Byte, _) => return None, | ||
(Float, Statistics::Float(s)) => s.max_opt()?.into(), | ||
(Float, _) => return None, | ||
(Double, Statistics::Double(s)) => s.max_opt()?.into(), | ||
(Double, Statistics::Float(s)) => (*s.max_opt()? as f64).into(), | ||
(Double, _) => return None, | ||
(Boolean, Statistics::Boolean(s)) => s.max_opt()?.into(), | ||
(Boolean, _) => return None, | ||
(Binary, Statistics::ByteArray(s)) => s.max_opt()?.data().into(), | ||
(Binary, Statistics::FixedLenByteArray(s)) => s.max_opt()?.data().into(), | ||
(Binary, _) => return None, | ||
(Date, Statistics::Int32(s)) => Scalar::Date(*s.max_opt()?), | ||
(Date, _) => return None, | ||
(Timestamp, Statistics::Int64(s)) => Scalar::Timestamp(*s.max_opt()?), | ||
(Timestamp, _) => return None, // TODO: Int96 timestamps | ||
(TimestampNtz, Statistics::Int64(s)) => Scalar::TimestampNtz(*s.max_opt()?), | ||
(TimestampNtz, Statistics::Int32(s)) => Self::timestamp_from_date(s.max_opt())?, | ||
(TimestampNtz, _) => return None, // TODO: Int96 timestamps | ||
(Decimal(p, s), Statistics::Int32(i)) => Scalar::Decimal(*i.max_opt()? as i128, *p, *s), | ||
(Decimal(p, s), Statistics::Int64(i)) => Scalar::Decimal(*i.max_opt()? as i128, *p, *s), | ||
(Decimal(p, s), Statistics::FixedLenByteArray(b)) => { | ||
Self::decimal_from_bytes(b.max_bytes_opt(), *p, *s)? | ||
} | ||
(Decimal(..), _) => return None, | ||
}; | ||
Some(value) | ||
} | ||
|
||
fn get_nullcount_stat_value(&self, col: &ColumnPath) -> Option<i64> { | ||
// NOTE: Stats for any given column are optional, which may produce a NULL nullcount. But if | ||
// the column itself is missing, then we know all values are implied to be NULL. | ||
let Some(stats) = self.get_stats(col) else { | ||
return Some(self.get_rowcount_stat_value()); | ||
}; | ||
|
||
// WARNING: [`Statistics::null_count_opt`] returns Some(0) when the underlying stat is | ||
// missing, causing an IS NULL predicate to wrongly skip the file if it contains any NULL | ||
// values. Manually drill into each arm's [`ValueStatistics`] for the stat's true. | ||
let nullcount = match stats? { | ||
Statistics::Boolean(s) => s.null_count_opt(), | ||
Statistics::Int32(s) => s.null_count_opt(), | ||
Statistics::Int64(s) => s.null_count_opt(), | ||
Statistics::Int96(s) => s.null_count_opt(), | ||
Statistics::Float(s) => s.null_count_opt(), | ||
Statistics::Double(s) => s.null_count_opt(), | ||
Statistics::ByteArray(s) => s.null_count_opt(), | ||
Statistics::FixedLenByteArray(s) => s.null_count_opt(), | ||
}; | ||
|
||
// Parquet nullcount stats are always u64, so we can directly return the value instead of | ||
// wrapping it in a Scalar. We can safely cast it from u64 to i64 because the nullcount can | ||
// never be larger than the rowcount and the parquet rowcount stat is i64. | ||
Some(nullcount? as i64) | ||
} | ||
|
||
fn get_rowcount_stat_value(&self) -> i64 { | ||
self.row_group.num_rows() | ||
} | ||
} | ||
|
||
/// Given a filter expression of interest and a set of parquet column descriptors, build a column -> | ||
/// index mapping for columns the expression references. This ensures O(1) lookup times, for an | ||
/// overall O(n) cost to evaluate an expression tree with n nodes. | ||
pub(crate) fn compute_field_indices( | ||
fields: &[ColumnDescPtr], | ||
expression: &Expression, | ||
) -> HashMap<ColumnPath, usize> { | ||
fn do_recurse(expression: &Expression, cols: &mut HashSet<ColumnPath>) { | ||
use Expression::*; | ||
let mut recurse = |expr| do_recurse(expr, cols); // simplifies the call sites below | ||
match expression { | ||
Literal(_) => {} | ||
Column(name) => cols.extend([col_name_to_path(name)]), // returns `()`, unlike `insert` | ||
Struct(fields) => fields.iter().for_each(recurse), | ||
UnaryOperation { expr, .. } => recurse(expr), | ||
BinaryOperation { left, right, .. } => [left, right].iter().for_each(|e| recurse(e)), | ||
VariadicOperation { exprs, .. } => exprs.iter().for_each(recurse), | ||
} | ||
} | ||
|
||
// Build up a set of requested column paths, then take each found path as the corresponding map | ||
// key (avoids unnecessary cloning). | ||
// | ||
// NOTE: If a requested column was not available, it is silently ignored. These missing columns | ||
// are implied all-null, so we will infer their min/max stats as NULL and nullcount == rowcount. | ||
let mut requested_columns = HashSet::new(); | ||
do_recurse(expression, &mut requested_columns); | ||
fields | ||
.iter() | ||
.enumerate() | ||
.filter_map(|(i, f)| requested_columns.take(f.path()).map(|path| (path, i))) | ||
.collect() | ||
} |
Oops, something went wrong.