diff --git a/kernel/src/engine/mod.rs b/kernel/src/engine/mod.rs index 2445c563e..01c0681d8 100644 --- a/kernel/src/engine/mod.rs +++ b/kernel/src/engine/mod.rs @@ -11,6 +11,9 @@ pub mod arrow_expression; #[cfg(any(feature = "default-engine", feature = "sync-engine"))] pub mod arrow_data; +#[cfg(any(feature = "default-engine", feature = "sync-engine"))] +pub mod parquet_stats_skipping; + #[cfg(any(feature = "default-engine", feature = "sync-engine"))] pub(crate) mod arrow_get_data; diff --git a/kernel/src/engine/parquet_stats_skipping.rs b/kernel/src/engine/parquet_stats_skipping.rs new file mode 100644 index 000000000..3758fd482 --- /dev/null +++ b/kernel/src/engine/parquet_stats_skipping.rs @@ -0,0 +1,406 @@ +//! An implementation of data skipping that leverages parquet stats from the file footer. +use crate::expressions::{BinaryOperator, Expression, Scalar, UnaryOperator, VariadicOperator}; +use crate::schema::DataType; +// TODO: This struct is this module's only dependency on arrow-parquet. Once kernel has proper +// support for nested paths, convert this code to use that instead. +use parquet::schema::types::ColumnPath; +use std::cmp::Ordering; +use tracing::info; + +#[cfg(test)] +mod tests; + +/// Data skipping based on parquet footer stats (e.g. row group skipping). The required methods +/// fetch stats values for requested columns (if available and with compatible types), and the +/// provided methods implement the actual skipping logic. +/// +/// NOTE: We are given a row-based filter, but stats-based predicate evaluation -- which applies to +/// a SET of rows -- has different semantics than row-based predicate evaluation. The provided +/// methods of this class convert various supported expressions into data skipping predicates, and +/// then return the result of evaluating the translated filter. +#[allow(unused)] // temporary, until we wire up the parquet reader to actually use this +pub(crate) trait ParquetStatsSkippingFilter { + /// Retrieves the minimum value of a column, if it exists and has the requested type. + fn get_min_stat_value(&self, col: &ColumnPath, data_type: &DataType) -> Option; + + /// Retrieves the maximum value of a column, if it exists and has the requested type. + fn get_max_stat_value(&self, col: &ColumnPath, data_type: &DataType) -> Option; + + /// Retrieves the null count of a column, if it exists. + fn get_nullcount_stat_value(&self, col: &ColumnPath) -> Option; + + /// Retrieves the row count of a column (parquet footers always include this stat). + fn get_rowcount_stat_value(&self) -> i64; + + /// Attempts to filter using SQL WHERE semantics. + /// + /// By default, [`apply_expr`] can produce unwelcome behavior for comparisons involving all-NULL + /// columns (e.g. `a == 10`), because the (legitimately NULL) min/max stats are interpreted as + /// stats-missing that produces a NULL data skipping result). The resulting NULL can "poison" + /// the entire expression, causing it to return NULL instead of FALSE that would allow skipping. + /// + /// Meanwhile, SQL WHERE semantics only keep rows for which the filter evaluates to TRUE -- + /// effectively turning `` into the null-safe predicate `AND( IS NOT NULL, )`. + /// + /// We cannot safely evaluate an arbitrary data skipping expression with null-safe semantics + /// (because NULL could also mean missing-stats), but we CAN safely turn a column reference in a + /// comparison into a null-safe comparison, as long as the comparison's parent expressions are + /// all AND. To see why, consider a WHERE clause filter of the form: + /// + /// ```text + /// AND(..., a {cmp} b, ...) + /// ``` + /// + /// In order allow skipping based on the all-null `a` or `b`, we want to actually evaluate: + /// ```text + /// AND(..., AND(a IS NOT NULL, b IS NOT NULL, a {cmp} b), ...) + /// ``` + /// + /// This optimization relies on the fact that we only support IS [NOT] NULL skipping for + /// columns, and we only support skipping for comparisons between columns and literals. Thus, a + /// typical case such as: `AND(..., x < 10, ...)` would in the all-null case be evaluated as: + /// ```text + /// AND(..., AND(x IS NOT NULL, 10 IS NOT NULL, x < 10), ...) + /// AND(..., AND(FALSE, NULL, NULL), ...) + /// AND(..., FALSE, ...) + /// FALSE + /// ``` + /// + /// In the not all-null case, it would instead evaluate as: + /// ```text + /// AND(..., AND(x IS NOT NULL, 10 IS NOT NULL, x < 10), ...) + /// AND(..., AND(TRUE, NULL, ), ...) + /// ``` + /// + /// If the result was FALSE, it forces both inner and outer AND to FALSE, as desired. If the + /// result was TRUE or NULL, then it does not contribute to data skipping but also does not + /// block it if other legs of the AND evaluate to FALSE. + fn apply_sql_where(&self, filter: &Expression) -> Option { + use Expression::*; + use VariadicOperator::And; + match filter { + VariadicOperation { op: And, exprs } => { + let exprs: Vec<_> = exprs + .iter() + .map(|expr| self.apply_sql_where(expr)) + .map(|result| match result { + Some(value) => Expression::literal(value), + None => Expression::null_literal(DataType::BOOLEAN), + }) + .collect(); + self.apply_variadic(And, &exprs, false) + } + BinaryOperation { op, left, right } => self.apply_binary_nullsafe(*op, left, right), + _ => self.apply_expr(filter, false), + } + } + + /// Helper method for [`apply_sql_where`], that evaluates `{a} {cmp} {b}` as + /// ```text + /// AND({a} IS NOT NULL, {b} IS NOT NULL, {a} {cmp} {b}) + /// ``` + /// + /// The null checks only apply to column expressions, so at least one of them will always be + /// NULL (since we don't support skipping over column-column comparisons). If any NULL check + /// fails (producing FALSE), it short-circuits the entire AND without ever evaluating the + /// comparison. Otherwise, the original comparison will run and -- if FALSE -- can cause data + /// skipping as usual. + fn apply_binary_nullsafe( + &self, + op: BinaryOperator, + left: &Expression, + right: &Expression, + ) -> Option { + use UnaryOperator::IsNull; + // Convert `a {cmp} b` to `AND(a IS NOT NULL, b IS NOT NULL, a {cmp} b)`, + // and only evaluate the comparison if the null checks don't short circuit. + if matches!(self.apply_unary(IsNull, left, true), Some(false)) { + return Some(false); + } + if matches!(self.apply_unary(IsNull, right, true), Some(false)) { + return Some(false); + } + self.apply_binary(op, left, right, false) + } + + /// Evaluates a predicate over stats instead of rows. Evaluation is a depth-first traversal over + /// all supported subexpressions; unsupported expressions (or expressions that rely on missing + /// stats) are replaced with NULL (`None`) values, which then propagate upward following the + /// NULL semantics of their parent expressions. If stats prove the filter would eliminate ALL + /// rows from the result, then this method returns `Some(false)` and those rows can be skipped + /// without inspecting them individually. A return value of `Some(true)` means the filter does + /// not reliably eliminate all rows, and `None` indicates the needed stats were not available. + /// + /// If `inverted`, the caller requests to evaluate `NOT(expression)` instead of evaluating + /// `expression` directly. This is important because `NOT(data_skipping(expr))` is NOT + /// `equivalent to data_skipping(NOT(expr))`, so we need to "push down" the NOT in order to + /// ensure correct semantics. For example, given the expression `x == 10`, and min-max stats + /// 1..100, `NOT(x == 10)` and `x == 10` both evaluate to TRUE (because neither filter can + /// provably eliminate all rows). + fn apply_expr(&self, expression: &Expression, inverted: bool) -> Option { + use Expression::*; + match expression { + VariadicOperation { op, exprs } => self.apply_variadic(*op, exprs, inverted), + BinaryOperation { op, left, right } => self.apply_binary(*op, left, right, inverted), + UnaryOperation { op, expr } => self.apply_unary(*op, expr, inverted), + Literal(value) => Self::apply_scalar(value, inverted), + Column(col) => self.apply_column(col, inverted), + Struct(_) => None, // not supported + } + } + + /// Evaluates AND/OR expressions with Kleene semantics and short circuit behavior. + /// + /// Short circuiting is based on the observation that each operator has a "dominant" boolean + /// value that forces the output to match regardless of any other input. For example, a single + /// FALSE input forces AND to FALSE, and a single TRUE input forces OR to TRUE. + /// + /// Kleene semantics mean that -- in the absence of any dominant input -- a single NULL input + /// forces the output to NULL. If no NULL nor dominant input is seen, then the operator's output + /// "defaults" to the non-dominant value (and we can actually just ignore non-dominant inputs). + /// + /// If the filter is inverted, use de Morgan's laws to push the inversion down into the inputs + /// (e.g. `NOT(AND(a, b))` becomes `OR(NOT(a), NOT(b))`). + fn apply_variadic( + &self, + op: VariadicOperator, + exprs: &[Expression], + inverted: bool, + ) -> Option { + // With AND (OR), any FALSE (TRUE) input forces FALSE (TRUE) output. If there was no + // dominating input, then any NULL input forces NULL output. Otherwise, return the + // non-dominant value. Inverting the operation also inverts the dominant value. + let dominator = match op { + VariadicOperator::And => inverted, + VariadicOperator::Or => !inverted, + }; + + // Evaluate the input expressions, inverting each as needed and tracking whether we've seen + // any NULL result. Stop immediately (short circuit) if we see a dominant value. + let result = exprs.iter().try_fold(false, |found_null, expr| { + match self.apply_expr(expr, inverted) { + Some(v) if v == dominator => None, // (1) short circuit, dominant found + Some(_) => Some(found_null), + None => Some(true), // (2) null found (but keep looking for a dominant value) + } + }); + + match result { + None => Some(dominator), // (1) short circuit, dominant found + Some(false) => Some(!dominator), + Some(true) => None, // (2) null found, dominant not found + } + } + + /// Evaluates binary comparisons. Any NULL input produces a NULL output. If `inverted`, the + /// opposite operation is performed, e.g. `<` evaluates as if `>=` had been requested instead. + fn apply_binary( + &self, + op: BinaryOperator, + left: &Expression, + right: &Expression, + inverted: bool, + ) -> Option { + use BinaryOperator::*; + use Expression::{Column, Literal}; + + // Min/Max stats don't allow us to push inversion down into the comparison. Instead, we + // invert the comparison itself when needed and compute normally after that. + let op = match inverted { + true => op.invert()?, + false => op, + }; + + // NOTE: We rely on the literal values to provide logical type hints. That means we cannot + // perform column-column comparisons, because we cannot infer the logical type to use. + let (op, col, val) = match (left, right) { + (Column(col), Literal(val)) => (op, col, val), + (Literal(val), Column(col)) => (op.commute()?, col, val), + (Literal(a), Literal(b)) => return Self::apply_binary_scalars(op, a, b), + _ => { + info!("Unsupported binary operand(s): {left:?} {op:?} {right:?}"); + return None; + } + }; + let col = col_name_to_path(col); + let min_max_disjunct = |min_ord, max_ord, inverted| -> Option { + let skip_lo = self.partial_cmp_min_stat(&col, val, min_ord, false)?; + let skip_hi = self.partial_cmp_max_stat(&col, val, max_ord, false)?; + let skip = skip_lo || skip_hi; + Some(skip != inverted) + }; + match op { + // Given `col == val`: + // skip if `val` cannot equal _any_ value in [min, max], implies + // skip if `NOT(val BETWEEN min AND max)` implies + // skip if `NOT(min <= val AND val <= max)` implies + // skip if `min > val OR max < val` + // keep if `NOT(min > val OR max < val)` + Equal => min_max_disjunct(Ordering::Greater, Ordering::Less, true), + // Given `col != val`: + // skip if `val` equals _every_ value in [min, max], implies + // skip if `val == min AND val == max` implies + // skip if `val <= min AND min <= val AND val <= max AND max <= val` implies + // skip if `val <= min AND max <= val` implies + // keep if `NOT(val <= min AND max <= val)` implies + // keep if `val > min OR max > val` implies + // keep if `min < val OR max > val` + NotEqual => min_max_disjunct(Ordering::Less, Ordering::Greater, false), + // Given `col < val`: + // Skip if `val` is not greater than _all_ values in [min, max], implies + // Skip if `val <= min AND val <= max` implies + // Skip if `val <= min` implies + // Keep if `NOT(val <= min)` implies + // Keep if `val > min` implies + // Keep if `min < val` + LessThan => self.partial_cmp_min_stat(&col, val, Ordering::Less, false), + // Given `col <= val`: + // Skip if `val` is less than _all_ values in [min, max], implies + // Skip if `val < min AND val < max` implies + // Skip if `val < min` implies + // Keep if `NOT(val < min)` implies + // Keep if `NOT(min > val)` + LessThanOrEqual => self.partial_cmp_min_stat(&col, val, Ordering::Greater, true), + // Given `col > val`: + // Skip if `val` is not less than _all_ values in [min, max], implies + // Skip if `val >= min AND val >= max` implies + // Skip if `val >= max` implies + // Keep if `NOT(val >= max)` implies + // Keep if `NOT(max <= val)` implies + // Keep if `max > val` + GreaterThan => self.partial_cmp_max_stat(&col, val, Ordering::Greater, false), + // Given `col >= val`: + // Skip if `val is greater than _every_ value in [min, max], implies + // Skip if `val > min AND val > max` implies + // Skip if `val > max` implies + // Keep if `NOT(val > max)` implies + // Keep if `NOT(max < val)` + GreaterThanOrEqual => self.partial_cmp_max_stat(&col, val, Ordering::Less, true), + _ => { + info!("Unsupported binary operator: {left:?} {op:?} {right:?}"); + None + } + } + } + + /// Helper method, invoked by [`apply_binary`], for constant comparisons. Query planner constant + /// folding optimizationss SHOULD eliminate such patterns, but we implement the support anyway + /// because propagating a NULL in its place could disable skipping entirely, e.g. an expression + /// such as `OR(10 == 20, )`. + fn apply_binary_scalars(op: BinaryOperator, left: &Scalar, right: &Scalar) -> Option { + use BinaryOperator::*; + match op { + Equal => partial_cmp_scalars(left, right, Ordering::Equal, false), + NotEqual => partial_cmp_scalars(left, right, Ordering::Equal, true), + LessThan => partial_cmp_scalars(left, right, Ordering::Less, false), + LessThanOrEqual => partial_cmp_scalars(left, right, Ordering::Greater, true), + GreaterThan => partial_cmp_scalars(left, right, Ordering::Greater, false), + GreaterThanOrEqual => partial_cmp_scalars(left, right, Ordering::Less, true), + _ => { + info!("Unsupported binary operator: {left:?} {op:?} {right:?}"); + None + } + } + } + + /// Applies unary NOT and IS [NOT] NULL. Null inputs to NOT produce NULL output. The null checks + /// are only defined for columns (not expressions), and they ony produce NULL output if the + /// necessary nullcount stats are missing. + fn apply_unary(&self, op: UnaryOperator, expr: &Expression, inverted: bool) -> Option { + match op { + UnaryOperator::Not => self.apply_expr(expr, !inverted), + UnaryOperator::IsNull => match expr { + Expression::Column(col) => { + let skip = match inverted { + // IS NOT NULL - skip if all-null + true => self.get_rowcount_stat_value(), + // IS NULL - skip if no-null + false => 0, + }; + let col = col_name_to_path(col); + Some(self.get_nullcount_stat_value(&col)? != skip) + } + _ => { + info!("Unsupported unary operation: {op:?}({expr:?})"); + None + } + }, + } + } + + /// Propagates a boolean-typed column, allowing e.g. `flag OR ...`. + /// Columns of other types are ignored (NULL result). + fn apply_column(&self, col: &str, inverted: bool) -> Option { + let col = col_name_to_path(col); + let as_boolean = |get: &dyn Fn(_, _, _) -> _| match get(self, &col, &DataType::BOOLEAN) { + Some(Scalar::Boolean(value)) => Some(value), + Some(other) => { + info!("Ignoring non-boolean column {col}"); + None + } + _ => None, + }; + let min = as_boolean(&Self::get_min_stat_value)?; + let max = as_boolean(&Self::get_max_stat_value)?; + Some(min != inverted || max != inverted) + } + + /// Propagates a boolean literal, allowing e.g. `FALSE OR ...`. + /// Literals of other types are ignored (NULL result). + fn apply_scalar(value: &Scalar, inverted: bool) -> Option { + match value { + Scalar::Boolean(value) => Some(*value != inverted), + _ => { + info!("Ignoring non-boolean literal {value}"); + None + } + } + } + + /// Performs a partial comparison against a column min-stat. See [`partial_cmp_scalars`] for + /// details of the comparison semantics. + fn partial_cmp_min_stat( + &self, + col: &ColumnPath, + val: &Scalar, + ord: Ordering, + inverted: bool, + ) -> Option { + let min = self.get_min_stat_value(col, &val.data_type())?; + partial_cmp_scalars(&min, val, ord, inverted) + } + + /// Performs a partial comparison against a column max-stat. See [`partial_cmp_scalars`] for + /// details of the comparison semantics. + fn partial_cmp_max_stat( + &self, + col: &ColumnPath, + val: &Scalar, + ord: Ordering, + inverted: bool, + ) -> Option { + let max = self.get_max_stat_value(col, &val.data_type())?; + partial_cmp_scalars(&max, val, ord, inverted) + } +} + +/// Compares two scalar values, returning Some(true) if the result matches the target `Ordering`. If +/// an inverted comparison is requested, then return Some(false) on match instead. For example, +/// requesting an inverted `Ordering::Less` matches both `Ordering::Greater` and `Ordering::Equal`, +/// corresponding to a logical `>=` comparison. Returns `None` if the values are incomparable, which +/// can occur because the types differ or because the type itself is incomparable. +pub(crate) fn partial_cmp_scalars( + a: &Scalar, + b: &Scalar, + ord: Ordering, + inverted: bool, +) -> Option { + let result = a.partial_cmp(b)? == ord; + Some(result != inverted) +} + +pub(crate) fn col_name_to_path(col: &str) -> ColumnPath { + // TODO: properly handle nested columns + // https://github.com/delta-incubator/delta-kernel-rs/issues/86 + ColumnPath::new(col.split('.').map(|s| s.to_string()).collect()) +} diff --git a/kernel/src/engine/parquet_stats_skipping/tests.rs b/kernel/src/engine/parquet_stats_skipping/tests.rs new file mode 100644 index 000000000..fc7f05eef --- /dev/null +++ b/kernel/src/engine/parquet_stats_skipping/tests.rs @@ -0,0 +1,930 @@ +use super::*; +use crate::expressions::{ArrayData, StructData}; +use crate::schema::ArrayType; +use crate::DataType; + +struct UnimplementedTestFilter; +impl ParquetStatsSkippingFilter for UnimplementedTestFilter { + fn get_min_stat_value(&self, _col: &ColumnPath, _data_type: &DataType) -> Option { + unimplemented!() + } + + fn get_max_stat_value(&self, _col: &ColumnPath, _data_type: &DataType) -> Option { + unimplemented!() + } + + fn get_nullcount_stat_value(&self, _col: &ColumnPath) -> Option { + unimplemented!() + } + + fn get_rowcount_stat_value(&self) -> i64 { + unimplemented!() + } +} + +struct JunctionTest { + inputs: &'static [Option], + expect_and: Option, + expect_or: Option, +} + +macro_rules! expect_eq { + ( $expr: expr, $expect: expr, $fmt: literal ) => { + let expect = ($expect); + let result = ($expr); + assert!( + result == expect, + "Expected {} = {:?}, got {:?}", + format!($fmt), + expect, + result + ); + }; +} +impl JunctionTest { + fn new( + inputs: &'static [Option], + expect_and: Option, + expect_or: Option, + ) -> Self { + Self { + inputs, + expect_and, + expect_or, + } + } + fn do_test(&self) { + use VariadicOperator::*; + let filter = UnimplementedTestFilter; + let inputs: Vec<_> = self + .inputs + .iter() + .map(|val| match val { + Some(v) => Expression::literal(v), + None => Expression::null_literal(DataType::BOOLEAN), + }) + .collect(); + + expect_eq!( + filter.apply_variadic(And, &inputs, false), + self.expect_and, + "AND({inputs:?})" + ); + expect_eq!( + filter.apply_variadic(Or, &inputs, false), + self.expect_or, + "OR({inputs:?})" + ); + expect_eq!( + filter.apply_variadic(And, &inputs, true), + self.expect_and.map(|val| !val), + "NOT(AND({inputs:?}))" + ); + expect_eq!( + filter.apply_variadic(Or, &inputs, true), + self.expect_or.map(|val| !val), + "NOT(OR({inputs:?}))" + ); + } +} + +/// Tests apply_variadic and apply_scalar +#[test] +fn test_junctions() { + let test_case = JunctionTest::new; + const TRUE: Option = Some(true); + const FALSE: Option = Some(false); + const NULL: Option = None; + let test_cases = &[ + // Every combo of 0, 1 and 2 inputs + test_case(&[], TRUE, FALSE), + test_case(&[TRUE], TRUE, TRUE), + test_case(&[FALSE], FALSE, FALSE), + test_case(&[NULL], NULL, NULL), + test_case(&[TRUE, TRUE], TRUE, TRUE), + test_case(&[TRUE, FALSE], FALSE, TRUE), + test_case(&[TRUE, NULL], NULL, TRUE), + test_case(&[FALSE, TRUE], FALSE, TRUE), + test_case(&[FALSE, FALSE], FALSE, FALSE), + test_case(&[FALSE, NULL], FALSE, NULL), + test_case(&[NULL, TRUE], NULL, TRUE), + test_case(&[NULL, FALSE], FALSE, NULL), + test_case(&[NULL, NULL], NULL, NULL), + // Every combo of 1:2 + test_case(&[TRUE, FALSE, FALSE], FALSE, TRUE), + test_case(&[FALSE, TRUE, FALSE], FALSE, TRUE), + test_case(&[FALSE, FALSE, TRUE], FALSE, TRUE), + test_case(&[TRUE, NULL, NULL], NULL, TRUE), + test_case(&[NULL, TRUE, NULL], NULL, TRUE), + test_case(&[NULL, NULL, TRUE], NULL, TRUE), + test_case(&[FALSE, TRUE, TRUE], FALSE, TRUE), + test_case(&[TRUE, FALSE, TRUE], FALSE, TRUE), + test_case(&[TRUE, TRUE, FALSE], FALSE, TRUE), + test_case(&[FALSE, NULL, NULL], FALSE, NULL), + test_case(&[NULL, FALSE, NULL], FALSE, NULL), + test_case(&[NULL, NULL, FALSE], FALSE, NULL), + test_case(&[NULL, TRUE, TRUE], NULL, TRUE), + test_case(&[TRUE, NULL, TRUE], NULL, TRUE), + test_case(&[TRUE, TRUE, NULL], NULL, TRUE), + test_case(&[NULL, FALSE, FALSE], FALSE, NULL), + test_case(&[FALSE, NULL, FALSE], FALSE, NULL), + test_case(&[FALSE, FALSE, NULL], FALSE, NULL), + // Every unique ordering of 3 + test_case(&[TRUE, FALSE, NULL], FALSE, TRUE), + test_case(&[TRUE, NULL, FALSE], FALSE, TRUE), + test_case(&[FALSE, TRUE, NULL], FALSE, TRUE), + test_case(&[FALSE, NULL, TRUE], FALSE, TRUE), + test_case(&[NULL, TRUE, FALSE], FALSE, TRUE), + test_case(&[NULL, FALSE, TRUE], FALSE, TRUE), + ]; + for test_case in test_cases { + test_case.do_test(); + } +} + +// tests apply_binary_scalars +#[test] +fn test_binary_scalars() { + use Scalar::*; + let smaller_values = &[ + Integer(1), + Long(1), + Short(1), + Byte(1), + Float(1.0), + Double(1.0), + String("1".into()), + Boolean(false), + Timestamp(1), + TimestampNtz(1), + Date(1), + Binary(vec![1]), + Decimal(1, 10, 10), // invalid value, + Null(DataType::LONG), + Struct(StructData::try_new(vec![], vec![]).unwrap()), + Array(ArrayData::new( + ArrayType::new(DataType::LONG, false), + vec![], + )), + ]; + let larger_values = &[ + Integer(10), + Long(10), + Short(10), + Byte(10), + Float(10.0), + Double(10.0), + String("10".into()), + Boolean(true), + Timestamp(10), + TimestampNtz(10), + Date(10), + Binary(vec![10]), + Decimal(10, 10, 10), // invalid value + Null(DataType::LONG), + Struct(StructData::try_new(vec![], vec![]).unwrap()), + Array(ArrayData::new( + ArrayType::new(DataType::LONG, false), + vec![], + )), + ]; + + // scalars of different types are always incomparable + use BinaryOperator::*; + let binary_ops = [ + Equal, + NotEqual, + LessThan, + LessThanOrEqual, + GreaterThan, + GreaterThanOrEqual, + ]; + let compare = UnimplementedTestFilter::apply_binary_scalars; + for (i, a) in smaller_values.iter().enumerate() { + for b in smaller_values.iter().skip(i + 1) { + for op in binary_ops { + let result = compare(op, a, b); + let a_type = a.data_type(); + let b_type = b.data_type(); + assert!( + result.is_none(), + "{a_type:?} should not be comparable to {b_type:?}" + ); + } + } + } + + let expect_if_comparable_type = |s: &_, expect| match s { + Null(_) | Decimal(..) | Struct(_) | Array(_) => None, + _ => Some(expect), + }; + + // Test same-type comparisons where a == b + for (a, b) in smaller_values.iter().zip(smaller_values.iter()) { + expect_eq!( + compare(Equal, a, b), + expect_if_comparable_type(a, true), + "{a:?} == {b:?}" + ); + + expect_eq!( + compare(NotEqual, a, b), + expect_if_comparable_type(a, false), + "{a:?} != {b:?}" + ); + + expect_eq!( + compare(LessThan, a, b), + expect_if_comparable_type(a, false), + "{a:?} < {b:?}" + ); + + expect_eq!( + compare(GreaterThan, a, b), + expect_if_comparable_type(a, false), + "{a:?} > {b:?}" + ); + + expect_eq!( + compare(LessThanOrEqual, a, b), + expect_if_comparable_type(a, true), + "{a:?} <= {b:?}" + ); + + expect_eq!( + compare(GreaterThanOrEqual, a, b), + expect_if_comparable_type(a, true), + "{a:?} >= {b:?}" + ); + } + + // Test same-type comparisons where a < b + for (a, b) in smaller_values.iter().zip(larger_values.iter()) { + expect_eq!( + compare(Equal, a, b), + expect_if_comparable_type(a, false), + "{a:?} == {b:?}" + ); + + expect_eq!( + compare(NotEqual, a, b), + expect_if_comparable_type(a, true), + "{a:?} != {b:?}" + ); + + expect_eq!( + compare(LessThan, a, b), + expect_if_comparable_type(a, true), + "{a:?} < {b:?}" + ); + + expect_eq!( + compare(GreaterThan, a, b), + expect_if_comparable_type(a, false), + "{a:?} > {b:?}" + ); + + expect_eq!( + compare(LessThanOrEqual, a, b), + expect_if_comparable_type(a, true), + "{a:?} <= {b:?}" + ); + + expect_eq!( + compare(GreaterThanOrEqual, a, b), + expect_if_comparable_type(a, false), + "{a:?} >= {b:?}" + ); + } +} + +struct MinMaxTestFilter { + min: Option, + max: Option, +} +impl MinMaxTestFilter { + fn new(min: Option, max: Option) -> Self { + Self { min, max } + } + fn get_stat_value(stat: &Option, data_type: &DataType) -> Option { + stat.as_ref() + .filter(|v| v.data_type() == *data_type) + .cloned() + } +} +impl ParquetStatsSkippingFilter for MinMaxTestFilter { + fn get_min_stat_value(&self, _col: &ColumnPath, data_type: &DataType) -> Option { + Self::get_stat_value(&self.min, data_type) + } + + fn get_max_stat_value(&self, _col: &ColumnPath, data_type: &DataType) -> Option { + Self::get_stat_value(&self.max, data_type) + } + + fn get_nullcount_stat_value(&self, _col: &ColumnPath) -> Option { + unimplemented!() + } + + fn get_rowcount_stat_value(&self) -> i64 { + unimplemented!() + } +} + +#[test] +fn test_binary_eq_ne() { + use BinaryOperator::*; + + const LO: Scalar = Scalar::Long(1); + const MID: Scalar = Scalar::Long(10); + const HI: Scalar = Scalar::Long(100); + let col = &Expression::column("x"); + + for inverted in [false, true] { + // negative test -- mismatched column type + expect_eq!( + MinMaxTestFilter::new(MID.into(), MID.into()).apply_binary( + Equal, + col, + &Expression::literal("10"), + inverted, + ), + None, + "{col} == '10' (min: {MID}, max: {MID}, inverted: {inverted})" + ); + + // quick test for literal-literal comparisons + expect_eq!( + MinMaxTestFilter::new(MID.into(), MID.into()).apply_binary( + Equal, + &MID.into(), + &MID.into(), + inverted, + ), + Some(!inverted), + "{MID} == {MID} (min: {MID}, max: {MID}, inverted: {inverted})" + ); + + // quick test for literal-column comparisons + expect_eq!( + MinMaxTestFilter::new(MID.into(), MID.into()).apply_binary( + Equal, + &MID.into(), + col, + inverted, + ), + Some(!inverted), + "{MID} == {col} (min: {MID}, max: {MID}, inverted: {inverted})" + ); + + expect_eq!( + MinMaxTestFilter::new(MID.into(), MID.into()).apply_binary( + Equal, + col, + &MID.into(), + inverted, + ), + Some(!inverted), + "{col} == {MID} (min: {MID}, max: {MID}, inverted: {inverted})" + ); + + expect_eq!( + MinMaxTestFilter::new(LO.into(), HI.into()).apply_binary( + Equal, + col, + &MID.into(), + inverted, + ), + Some(true), // min..max range includes both EQ and NE + "{col} == {MID} (min: {LO}, max: {HI}, inverted: {inverted})" + ); + + expect_eq!( + MinMaxTestFilter::new(LO.into(), MID.into()).apply_binary( + Equal, + col, + &HI.into(), + inverted, + ), + Some(inverted), + "{col} == {HI} (min: {LO}, max: {MID}, inverted: {inverted})" + ); + + expect_eq!( + MinMaxTestFilter::new(MID.into(), HI.into()).apply_binary( + Equal, + col, + &LO.into(), + inverted, + ), + Some(inverted), + "{col} == {LO} (min: {MID}, max: {HI}, inverted: {inverted})" + ); + + // negative test -- mismatched column type + expect_eq!( + MinMaxTestFilter::new(MID.into(), MID.into()).apply_binary( + NotEqual, + col, + &Expression::literal("10"), + inverted, + ), + None, + "{col} != '10' (min: {MID}, max: {MID}, inverted: {inverted})" + ); + + expect_eq!( + MinMaxTestFilter::new(MID.into(), MID.into()).apply_binary( + NotEqual, + col, + &MID.into(), + inverted, + ), + Some(inverted), + "{col} != {MID} (min: {MID}, max: {MID}, inverted: {inverted})" + ); + + expect_eq!( + MinMaxTestFilter::new(LO.into(), HI.into()).apply_binary( + NotEqual, + col, + &MID.into(), + inverted, + ), + Some(true), // min..max range includes both EQ and NE + "{col} != {MID} (min: {LO}, max: {HI}, inverted: {inverted})" + ); + + expect_eq!( + MinMaxTestFilter::new(LO.into(), MID.into()).apply_binary( + NotEqual, + col, + &HI.into(), + inverted, + ), + Some(!inverted), + "{col} != {HI} (min: {LO}, max: {MID}, inverted: {inverted})" + ); + + expect_eq!( + MinMaxTestFilter::new(MID.into(), HI.into()).apply_binary( + NotEqual, + col, + &LO.into(), + inverted, + ), + Some(!inverted), + "{col} != {LO} (min: {MID}, max: {HI}, inverted: {inverted})" + ); + } +} + +#[test] +fn test_binary_lt_ge() { + use BinaryOperator::*; + + const LO: Scalar = Scalar::Long(1); + const MID: Scalar = Scalar::Long(10); + const HI: Scalar = Scalar::Long(100); + let col = &Expression::column("x"); + + for inverted in [false, true] { + expect_eq!( + MinMaxTestFilter::new(MID.into(), MID.into()).apply_binary( + LessThan, + col, + &MID.into(), + inverted, + ), + Some(inverted), + "{col} < {MID} (min: {MID}, max: {MID}, inverted: {inverted})" + ); + + expect_eq!( + MinMaxTestFilter::new(LO.into(), HI.into()).apply_binary( + LessThan, + col, + &MID.into(), + inverted, + ), + Some(true), // min..max range includes both LT and GE + "{col} < {MID} (min: {LO}, max: {HI}, inverted: {inverted})" + ); + + expect_eq!( + MinMaxTestFilter::new(LO.into(), MID.into()).apply_binary( + LessThan, + col, + &HI.into(), + inverted, + ), + Some(!inverted), + "{col} < {HI} (min: {LO}, max: {MID}, inverted: {inverted})" + ); + + expect_eq!( + MinMaxTestFilter::new(MID.into(), HI.into()).apply_binary( + LessThan, + col, + &LO.into(), + inverted, + ), + Some(inverted), + "{col} < {LO} (min: {MID}, max: {HI}, inverted: {inverted})" + ); + + expect_eq!( + MinMaxTestFilter::new(MID.into(), MID.into()).apply_binary( + GreaterThanOrEqual, + col, + &MID.into(), + inverted, + ), + Some(!inverted), + "{col} >= {MID} (min: {MID}, max: {MID}, inverted: {inverted})" + ); + + expect_eq!( + MinMaxTestFilter::new(LO.into(), HI.into()).apply_binary( + GreaterThanOrEqual, + col, + &MID.into(), + inverted, + ), + Some(true), // min..max range includes both EQ and NE + "{col} >= {MID} (min: {LO}, max: {HI}, inverted: {inverted})" + ); + + expect_eq!( + MinMaxTestFilter::new(LO.into(), MID.into()).apply_binary( + GreaterThanOrEqual, + col, + &HI.into(), + inverted, + ), + Some(inverted), + "{col} >= {HI} (min: {LO}, max: {MID}, inverted: {inverted})" + ); + + expect_eq!( + MinMaxTestFilter::new(MID.into(), HI.into()).apply_binary( + GreaterThanOrEqual, + col, + &LO.into(), + inverted, + ), + Some(!inverted), + "{col} >= {LO} (min: {MID}, max: {HI}, inverted: {inverted})" + ); + } +} + +#[test] +fn test_binary_le_gt() { + use BinaryOperator::*; + + const LO: Scalar = Scalar::Long(1); + const MID: Scalar = Scalar::Long(10); + const HI: Scalar = Scalar::Long(100); + let col = &Expression::column("x"); + + for inverted in [false, true] { + // negative test -- mismatched column type + expect_eq!( + MinMaxTestFilter::new(MID.into(), MID.into()).apply_binary( + LessThanOrEqual, + col, + &Expression::literal("10"), + inverted, + ), + None, + "{col} <= '10' (min: {MID}, max: {MID}, inverted: {inverted})" + ); + + expect_eq!( + MinMaxTestFilter::new(MID.into(), MID.into()).apply_binary( + LessThanOrEqual, + col, + &MID.into(), + inverted, + ), + Some(!inverted), + "{col} <= {MID} (min: {MID}, max: {MID}, inverted: {inverted})" + ); + + expect_eq!( + MinMaxTestFilter::new(LO.into(), HI.into()).apply_binary( + LessThanOrEqual, + col, + &MID.into(), + inverted, + ), + Some(true), // min..max range includes both LT and GE + "{col} <= {MID} (min: {LO}, max: {HI}, inverted: {inverted})" + ); + + expect_eq!( + MinMaxTestFilter::new(LO.into(), MID.into()).apply_binary( + LessThanOrEqual, + col, + &HI.into(), + inverted, + ), + Some(!inverted), + "{col} <= {HI} (min: {LO}, max: {MID}, inverted: {inverted})" + ); + + expect_eq!( + MinMaxTestFilter::new(MID.into(), HI.into()).apply_binary( + LessThanOrEqual, + col, + &LO.into(), + inverted, + ), + Some(inverted), + "{col} <= {LO} (min: {MID}, max: {HI}, inverted: {inverted})" + ); + + // negative test -- mismatched column type + expect_eq!( + MinMaxTestFilter::new(MID.into(), MID.into()).apply_binary( + GreaterThan, + col, + &Expression::literal("10"), + inverted, + ), + None, + "{col} > '10' (min: {MID}, max: {MID}, inverted: {inverted})" + ); + + expect_eq!( + MinMaxTestFilter::new(MID.into(), MID.into()).apply_binary( + GreaterThan, + col, + &MID.into(), + inverted, + ), + Some(inverted), + "{col} > {MID} (min: {MID}, max: {MID}, inverted: {inverted})" + ); + + expect_eq!( + MinMaxTestFilter::new(LO.into(), HI.into()).apply_binary( + GreaterThan, + col, + &MID.into(), + inverted, + ), + Some(true), // min..max range includes both EQ and NE + "{col} > {MID} (min: {LO}, max: {HI}, inverted: {inverted})" + ); + + expect_eq!( + MinMaxTestFilter::new(LO.into(), MID.into()).apply_binary( + GreaterThan, + col, + &HI.into(), + inverted, + ), + Some(inverted), + "{col} > {HI} (min: {LO}, max: {MID}, inverted: {inverted})" + ); + + expect_eq!( + MinMaxTestFilter::new(MID.into(), HI.into()).apply_binary( + GreaterThan, + col, + &LO.into(), + inverted, + ), + Some(!inverted), + "{col} > {LO} (min: {MID}, max: {HI}, inverted: {inverted})" + ); + } +} + +struct NullCountTestFilter { + nullcount: Option, + rowcount: i64, +} +impl NullCountTestFilter { + fn new(nullcount: Option, rowcount: i64) -> Self { + Self { + nullcount, + rowcount, + } + } +} +impl ParquetStatsSkippingFilter for NullCountTestFilter { + fn get_min_stat_value(&self, _col: &ColumnPath, _data_type: &DataType) -> Option { + unimplemented!() + } + + fn get_max_stat_value(&self, _col: &ColumnPath, _data_type: &DataType) -> Option { + unimplemented!() + } + + fn get_nullcount_stat_value(&self, _col: &ColumnPath) -> Option { + self.nullcount + } + + fn get_rowcount_stat_value(&self) -> i64 { + self.rowcount + } +} + +#[test] +fn test_not_null() { + use UnaryOperator::IsNull; + + let col = &Expression::column("x"); + for inverted in [false, true] { + expect_eq!( + NullCountTestFilter::new(None, 10).apply_unary(IsNull, col, inverted), + None, + "{col} IS NULL (nullcount: None, rowcount: 10, inverted: {inverted})" + ); + + expect_eq!( + NullCountTestFilter::new(Some(0), 10).apply_unary(IsNull, col, inverted), + Some(inverted), + "{col} IS NULL (nullcount: 0, rowcount: 10, inverted: {inverted})" + ); + + expect_eq!( + NullCountTestFilter::new(Some(5), 10).apply_unary(IsNull, col, inverted), + Some(true), + "{col} IS NULL (nullcount: 5, rowcount: 10, inverted: {inverted})" + ); + + expect_eq!( + NullCountTestFilter::new(Some(10), 10).apply_unary(IsNull, col, inverted), + Some(!inverted), + "{col} IS NULL (nullcount: 10, rowcount: 10, inverted: {inverted})" + ); + } +} + +#[test] +fn test_bool_col() { + use Scalar::Boolean; + const TRUE: Scalar = Boolean(true); + const FALSE: Scalar = Boolean(false); + for inverted in [false, true] { + expect_eq!( + MinMaxTestFilter::new(TRUE.into(), TRUE.into()).apply_column("x", inverted), + Some(!inverted), + "x as boolean (min: TRUE, max: TRUE, inverted: {inverted})" + ); + expect_eq!( + MinMaxTestFilter::new(FALSE.into(), TRUE.into()).apply_column("x", inverted), + Some(true), + "x as boolean (min: FALSE, max: TRUE, inverted: {inverted})" + ); + expect_eq!( + MinMaxTestFilter::new(FALSE.into(), FALSE.into()).apply_column("x", inverted), + Some(inverted), + "x as boolean (min: FALSE, max: FALSE, inverted: {inverted})" + ); + } +} + +struct AllNullTestFilter; +impl ParquetStatsSkippingFilter for AllNullTestFilter { + fn get_min_stat_value(&self, _col: &ColumnPath, _data_type: &DataType) -> Option { + None + } + + fn get_max_stat_value(&self, _col: &ColumnPath, _data_type: &DataType) -> Option { + None + } + + fn get_nullcount_stat_value(&self, _col: &ColumnPath) -> Option { + Some(self.get_rowcount_stat_value()) + } + + fn get_rowcount_stat_value(&self) -> i64 { + 10 + } +} + +#[test] +fn test_sql_where() { + let col = &Expression::column("x"); + let val = &Expression::literal(1); + const NULL: Expression = Expression::Literal(Scalar::Null(DataType::BOOLEAN)); + const FALSE: Expression = Expression::Literal(Scalar::Boolean(false)); + const TRUE: Expression = Expression::Literal(Scalar::Boolean(true)); + + // Basic sanity checks + expect_eq!(AllNullTestFilter.apply_sql_where(val), None, "WHERE {val}"); + expect_eq!(AllNullTestFilter.apply_sql_where(col), None, "WHERE {col}"); + expect_eq!( + AllNullTestFilter.apply_sql_where(&Expression::is_null(col.clone())), + Some(true), // No injected NULL checks + "WHERE {col} IS NULL" + ); + expect_eq!( + AllNullTestFilter.apply_sql_where(&Expression::lt(TRUE, FALSE)), + Some(false), // Injected NULL checks don't short circuit when inputs are NOT NULL + "WHERE {TRUE} < {FALSE}" + ); + + // Constrast normal vs SQL WHERE semantics - comparison + expect_eq!( + AllNullTestFilter.apply_expr(&Expression::lt(col.clone(), val.clone()), false), + None, + "{col} < {val}" + ); + expect_eq!( + AllNullTestFilter.apply_sql_where(&Expression::lt(col.clone(), val.clone())), + Some(false), + "WHERE {col} < {val}" + ); + expect_eq!( + AllNullTestFilter.apply_expr(&Expression::lt(val.clone(), col.clone()), false), + None, + "{val} < {col}" + ); + expect_eq!( + AllNullTestFilter.apply_sql_where(&Expression::lt(val.clone(), col.clone())), + Some(false), + "WHERE {val} < {col}" + ); + + // Constrast normal vs SQL WHERE semantics - comparison inside AND + expect_eq!( + AllNullTestFilter.apply_expr( + &Expression::and_from([NULL, Expression::lt(col.clone(), val.clone()),]), + false + ), + None, + "{NULL} AND {col} < {val}" + ); + expect_eq!( + AllNullTestFilter.apply_sql_where(&Expression::and_from([ + NULL, + Expression::lt(col.clone(), val.clone()), + ])), + Some(false), + "WHERE {NULL} AND {col} < {val}" + ); + + expect_eq!( + AllNullTestFilter.apply_expr( + &Expression::and_from([TRUE, Expression::lt(col.clone(), val.clone()),]), + false + ), + None, // NULL (from the NULL check) is stronger than TRUE + "{TRUE} AND {col} < {val}" + ); + expect_eq!( + AllNullTestFilter.apply_sql_where(&Expression::and_from([ + TRUE, + Expression::lt(col.clone(), val.clone()), + ])), + Some(false), // FALSE (from the NULL check) is stronger than TRUE + "WHERE {TRUE} AND {col} < {val}" + ); + + // Contrast normal vs. SQL WHERE semantics - comparison inside AND inside AND + expect_eq!( + AllNullTestFilter.apply_expr( + &Expression::and_from([ + TRUE, + Expression::and_from([NULL, Expression::lt(col.clone(), val.clone()),]), + ]), + false, + ), + None, + "{TRUE} AND ({NULL} AND {col} < {val})" + ); + expect_eq!( + AllNullTestFilter.apply_sql_where(&Expression::and_from([ + TRUE, + Expression::and_from([NULL, Expression::lt(col.clone(), val.clone()),]), + ])), + Some(false), + "WHERE {TRUE} AND ({NULL} AND {col} < {val})" + ); + + // Semantics are the same for comparison inside OR inside AND + expect_eq!( + AllNullTestFilter.apply_expr( + &Expression::or_from([ + FALSE, + Expression::and_from([NULL, Expression::lt(col.clone(), val.clone()),]), + ]), + false, + ), + None, + "{FALSE} OR ({NULL} AND {col} < {val})" + ); + expect_eq!( + AllNullTestFilter.apply_sql_where(&Expression::or_from([ + FALSE, + Expression::and_from([NULL, Expression::lt(col.clone(), val.clone()),]), + ])), + None, + "WHERE {FALSE} OR ({NULL} AND {col} < {val})" + ); +} diff --git a/kernel/src/expressions/mod.rs b/kernel/src/expressions/mod.rs index 2f31258e7..7f2474014 100644 --- a/kernel/src/expressions/mod.rs +++ b/kernel/src/expressions/mod.rs @@ -6,10 +6,11 @@ use std::fmt::{Display, Formatter}; use itertools::Itertools; pub use self::scalars::{ArrayData, Scalar, StructData}; +use crate::DataType; mod scalars; -#[derive(Debug, Clone, PartialEq, Eq, Hash)] +#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)] /// A binary operator. pub enum BinaryOperator { /// Arithmetic Plus @@ -49,7 +50,7 @@ impl BinaryOperator { GreaterThanOrEqual => Some(LessThanOrEqual), LessThan => Some(GreaterThan), LessThanOrEqual => Some(GreaterThanOrEqual), - Equal | NotEqual | Plus | Multiply => Some(self.clone()), + Equal | NotEqual | Plus | Multiply => Some(*self), _ => None, } } @@ -72,7 +73,7 @@ impl BinaryOperator { } } -#[derive(Debug, Clone, PartialEq)] +#[derive(Debug, Clone, Copy, PartialEq)] pub enum VariadicOperator { And, Or, @@ -111,7 +112,7 @@ impl Display for BinaryOperator { } } -#[derive(Debug, Clone, PartialEq)] +#[derive(Debug, Clone, Copy, PartialEq)] /// A unary operator. pub enum UnaryOperator { /// Unary Not @@ -228,6 +229,10 @@ impl Expression { Self::Literal(value.into()) } + pub fn null_literal(data_type: DataType) -> Self { + Self::Literal(Scalar::Null(data_type)) + } + /// Create a new struct expression pub fn struct_expr(exprs: impl IntoIterator) -> Self { Self::Struct(exprs.into_iter().collect()) diff --git a/kernel/src/expressions/scalars.rs b/kernel/src/expressions/scalars.rs index 2cf50fe53..89ca1b327 100644 --- a/kernel/src/expressions/scalars.rs +++ b/kernel/src/expressions/scalars.rs @@ -214,6 +214,44 @@ impl Display for Scalar { } } +impl PartialOrd for Scalar { + fn partial_cmp(&self, other: &Self) -> Option { + use Scalar::*; + match (self, other) { + // NOTE: We intentionally do two match arms for each variant to avoid a catch-all, so + // that new variants trigger compilation failures instead of being silently ignored. + (Integer(a), Integer(b)) => a.partial_cmp(b), + (Integer(_), _) => None, + (Long(a), Long(b)) => a.partial_cmp(b), + (Long(_), _) => None, + (Short(a), Short(b)) => a.partial_cmp(b), + (Short(_), _) => None, + (Byte(a), Byte(b)) => a.partial_cmp(b), + (Byte(_), _) => None, + (Float(a), Float(b)) => a.partial_cmp(b), + (Float(_), _) => None, + (Double(a), Double(b)) => a.partial_cmp(b), + (Double(_), _) => None, + (String(a), String(b)) => a.partial_cmp(b), + (String(_), _) => None, + (Boolean(a), Boolean(b)) => a.partial_cmp(b), + (Boolean(_), _) => None, + (Timestamp(a), Timestamp(b)) => a.partial_cmp(b), + (Timestamp(_), _) => None, + (TimestampNtz(a), TimestampNtz(b)) => a.partial_cmp(b), + (TimestampNtz(_), _) => None, + (Date(a), Date(b)) => a.partial_cmp(b), + (Date(_), _) => None, + (Binary(a), Binary(b)) => a.partial_cmp(b), + (Binary(_), _) => None, + (Decimal(_, _, _), _) => None, // TODO: Support Decimal + (Null(_), _) => None, // NOTE: NULL values are incomparable by definition + (Struct(_), _) => None, // TODO: Support Struct? + (Array(_), _) => None, // TODO: Support Array? + } + } +} + impl From for Scalar { fn from(i: i8) -> Self { Self::Byte(i) @@ -268,6 +306,18 @@ impl From for Scalar { } } +impl + Copy> From<&T> for Scalar { + fn from(t: &T) -> Self { + (*t).into() + } +} + +impl From<&[u8]> for Scalar { + fn from(b: &[u8]) -> Self { + Self::Binary(b.into()) + } +} + // TODO: add more From impls impl PrimitiveType { diff --git a/kernel/src/lib.rs b/kernel/src/lib.rs index 2e96e0e37..d9eabcbc6 100644 --- a/kernel/src/lib.rs +++ b/kernel/src/lib.rs @@ -193,6 +193,8 @@ pub trait JsonHandler: Send + Sync { &self, files: &[FileMeta], physical_schema: SchemaRef, + // TODO: This should really be an Option>, because otherwise we have to + // clone the (potentially large) expression every time we call this function. predicate: Option, ) -> DeltaResult; } @@ -215,6 +217,8 @@ pub trait ParquetHandler: Send + Sync { &self, files: &[FileMeta], physical_schema: SchemaRef, + // TODO: This should really be an Option>, because otherwise we have to + // clone the (potentially large) expression every time we call this function. predicate: Option, ) -> DeltaResult; } diff --git a/kernel/src/scan/data_skipping.rs b/kernel/src/scan/data_skipping.rs index 9ff675743..989acd537 100644 --- a/kernel/src/scan/data_skipping.rs +++ b/kernel/src/scan/data_skipping.rs @@ -110,7 +110,7 @@ fn as_data_skipping_predicate(expr: &Expr) -> Option { match expr { BinaryOperation { op, left, right } => { let (op, col, val) = match (left.as_ref(), right.as_ref()) { - (Column(col), Literal(val)) => (op.clone(), col, val), + (Column(col), Literal(val)) => (*op, col, val), (Literal(val), Column(col)) => (op.commute()?, col, val), _ => return None, // unsupported combination of operands }; diff --git a/kernel/src/scan/mod.rs b/kernel/src/scan/mod.rs index b4d9c59c1..817229c53 100644 --- a/kernel/src/scan/mod.rs +++ b/kernel/src/scan/mod.rs @@ -345,13 +345,11 @@ pub fn scan_row_schema() -> Schema { } fn parse_partition_value(raw: Option<&String>, data_type: &DataType) -> DeltaResult { - match raw { - Some(v) => match data_type { - DataType::Primitive(primitive) => primitive.parse_scalar(v), - _ => Err(Error::generic(format!( - "Unexpected partition column type: {data_type:?}" - ))), - }, + match (raw, data_type.as_primitive_opt()) { + (Some(v), Some(primitive)) => primitive.parse_scalar(v), + (Some(_), None) => Err(Error::generic(format!( + "Unexpected partition column type: {data_type:?}" + ))), _ => Ok(Scalar::Null(data_type.clone())), } } diff --git a/kernel/src/schema.rs b/kernel/src/schema.rs index 98fd5b8ec..f976ee546 100644 --- a/kernel/src/schema.rs +++ b/kernel/src/schema.rs @@ -510,6 +510,13 @@ impl DataType { pub fn array_type(elements: ArrayType) -> Self { DataType::Array(Box::new(elements)) } + + pub fn as_primitive_opt(&self) -> Option<&PrimitiveType> { + match self { + DataType::Primitive(ptype) => Some(ptype), + _ => None, + } + } } impl Display for DataType {