-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathparse_experiments.py
608 lines (567 loc) · 24 KB
/
parse_experiments.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
"""Parse the experiments folder."""
# %%
from copy import copy
from pathlib import Path
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import statsmodels.api as sm
import statsmodels.formula.api as smf
from dotenv import dotenv_values
from matplotlib import pyplot as plt
from matplotlib import ticker
from statsmodels.tools.tools import add_constant
import darkmode_orange
FLOAT_FMT = ",.0f"
short_variable_names = {
"CURVE_FEE": "curve fee",
"FLAT_FEE": "flat fee",
"DAILY_VOLUME_PERCENTAGE_OF_LIQUIDITY": "volume",
"FIXED_RATE": "rate",
"MINIMUM_TRADE_DAYS": "trade length",
}
# %%
# do shit
EXPERIMENT_FOLDER = Path("runs/")
PARQUET_FILES = ["agg_results1.parquet", "agg_results2.parquet", "rate_paths.parquet"]
DELETE_PREVIOUS_PARQUET_FILES = True
if DELETE_PREVIOUS_PARQUET_FILES:
for file in PARQUET_FILES:
if Path(file).exists():
Path(file).unlink()
df1 = pd.read_parquet("agg_results1.parquet") if Path("agg_results1.parquet").exists() else pd.DataFrame()
df2 = pd.read_parquet("agg_results2.parquet") if Path("agg_results2.parquet").exists() else pd.DataFrame()
rate_paths = pd.read_parquet("rate_paths.parquet") if Path("rate_paths.parquet").exists() else pd.DataFrame()
incomplete_runs = []
experiment_stats = pd.DataFrame()
# for each folder in the experiments folder
for folder in EXPERIMENT_FOLDER.iterdir():
if folder.is_dir():
if "exp" in folder.name:
experiment_id = int(folder.name.split("_")[1])
else:
experiment_id = int(folder.name)
print(f"Experiment ID {experiment_id}")
# check if parameters.env exists and it has a non-zero size
parameters = folder / "parameters.env"
if parameters.exists() and parameters.stat().st_size > 0:
# load it
params = dotenv_values(parameters)
if df1.shape[0] > 0 and experiment_id in df1["experiment"].values:
print(f"Experiment ID {experiment_id} already in agg_results1.parquet")
else:
# check if results1.parquet exists and it has a non-zero size
file1 = folder / "results1.parquet"
if file1.exists() and file1.stat().st_size > 0:
# load it
print(f"loading results from {file1} for experiment {experiment_id}")
df_new = pd.read_parquet(file1)
# add the experiment id and parameters
df_new["experiment"] = experiment_id
for param, value in params.items():
df_new[param] = value
# append it
df1 = pd.concat([df1, df_new], ignore_index=True)
else:
incomplete_runs.append(experiment_id)
print(f"Experiment ID {experiment_id} has no results1.parquet")
if df2.shape[0] > 0 and experiment_id in df2["experiment"].values:
print(f"Experiment ID {experiment_id} already in agg_results2.parquet")
else:
# check if results2.parquet exists and it has a non-zero size
file2 = folder / "results2.parquet"
if file2.exists() and file2.stat().st_size > 0:
# load it
print(f"loading results from {file2} for experiment {experiment_id}")
df_new = pd.read_parquet(file2)
# add the experiment id and parameters
df_new["experiment"] = experiment_id
for param, value in params.items():
df_new[param] = value
# append it
df2 = pd.concat([df2, df_new], ignore_index=True)
else:
incomplete_runs.append(experiment_id)
print(f"Experiment ID {experiment_id} has no results2.parquet")
if rate_paths.shape[0] > 0 and experiment_id in rate_paths["experiment"].values:
print(f"Experiment ID {experiment_id} already in rate_paths.parquet")
else:
# check if pool_info.parquet exists and it has a non-zero size
file3 = folder / "pool_info.parquet"
if file3.exists() and file3.stat().st_size > 0:
# load it
print(f"loading results from {file3} for experiment {experiment_id}")
df_new = pd.read_parquet(file3)
# add the experiment id
df_new["experiment"] = experiment_id
# append it
print("rate paths before concat: ", rate_paths.shape)
print("df_new: ", df_new.shape)
rate_paths = pd.concat([rate_paths, df_new], ignore_index=True, axis=0)
print("rate paths after concat: ", rate_paths.shape)
else:
incomplete_runs.append(experiment_id)
print(f"Experiment ID {experiment_id} has no pool_info.parquet")
file4 = folder / "experiment_stats.json"
if file4.exists() and file4.stat().st_size > 0:
# load it
print(f"loading results from {file4} for experiment {experiment_id}")
new_df = pd.read_json(file4, orient="records", lines=True)
new_df.index = pd.Index(data=[experiment_id], name="experiment")
experiment_stats = pd.concat([experiment_stats, new_df], ignore_index=False)
else:
incomplete_runs.append(experiment_id)
print(f"Experiment ID {experiment_id} has no experiment_stats.json")
if "AGENT0_INSTALL_FOLDER" in df2.columns:
df2 = df2.drop(columns=["AGENT0_INSTALL_FOLDER"])
# df1.to_parquet("agg_results1.parquet")
# df2.to_parquet("agg_results2.parquet")
incomplete_runs = list(set(incomplete_runs))
print(f"{len(incomplete_runs)} incomplete runs: {','.join(map(str, incomplete_runs))}")
# %%
# ensure data looks correct
# min and max are equal to average
grpd = df2.loc[:, ["experiment", "block_number"]].groupby("experiment").count()
assert grpd.min().values[0] == grpd.max().values[0]
# IDs are continuous
missing_ids = []
for experiment_id in range(df2.experiment.max() + 1):
if experiment_id not in df2.experiment:
missing_ids.append(experiment_id)
if len(missing_ids) > 0:
print(f"missing experiment IDS: {', '.join(map(str, missing_ids))}")
# %%
# manipulate columns
cols = df2.columns
# keep only columns after "experiment"
cols = cols[cols.get_loc("experiment") + 1 :]
# convert to float
df2[cols] = df2[cols].astype(float)
df2.apr = df2.apr.astype(float)
# summarize
df2.loc[:, cols].describe()
idx = df2.username == "larry"
last_share_price = (df2.username == "share price") & (df2.experiment == df2.experiment.max())
df2["CURVE_FEE_X_DAILY_VOLUME"] = df2.CURVE_FEE * df2.DAILY_VOLUME_PERCENTAGE_OF_LIQUIDITY * 1
df2["FIXED_V_VARIABLE"] = df2.FIXED_RATE - 0.035
df2["ABS_FIXED_V_VARIABLE"] = abs(df2.FIXED_RATE - 0.035)
# %%
# regression
vars = []
vars.append("CURVE_FEE_X_DAILY_VOLUME")
vars.append("ABS_FIXED_V_VARIABLE")
# vars.append("FIXED_V_VARIABLE")
# vars.append("FIXED_RATE")
model = smf.ols(f"apr ~ {' + '.join(vars)}", data=df2.loc[idx, :]).fit()
display(model.summary())
# Print the formula with coefficients
intercept = model.params.Intercept
coefs = model.params
formula = f"apr = {intercept:,.3f}"
for var, coef in zip(vars, coefs[1:]):
formula += f" {'+' if coef > 0 else '-'} {coef:,.3f} * {var}"
print(formula)
# %%
# big table
# display(
# df2.loc[idx | last_share_price, :]
# .rename(columns={"DAILY_VOLUME_PERCENTAGE_OF_LIQUIDITY": "volume_per_day"})
# .sort_values("apr", ascending=False)
# .style.format(
# subset=["apr", "position", "total_volume"],
# formatter="{:" + FLOAT_FMT + "}",
# )
# .hide(axis="index")
# .format(
# subset=["hpr", "apr"],
# formatter="{:.2%}",
# )
# .hide(
# axis="columns",
# subset=[
# "block_number",
# "TERM_DAYS",
# "AMOUNT_OF_LIQUIDITY",
# "GOVERNANCE_FEE",
# "RANDSEED",
# "FLAT_FEE",
# ],
# )
# )
# df2.loc[idx | last_share_price, :].to_csv("bigtable.csv", index=False)
# %%
# check every combination
# var_list = ["CURVE_FEE", "DAILY_VOLUME_PERCENTAGE_OF_LIQUIDITY", "FIXED_RATE"]
var_list = ["CURVE_FEE", "FLAT_FEE", "MINIMUM_TRADE_DAYS", "DAILY_VOLUME_PERCENTAGE_OF_LIQUIDITY"]
# keep only vars that exist in our columns
var_list = [v for v in var_list if v in df2.columns]
x_var = var_list[0]
print("count")
matrix_count = df2.loc[idx, var_list + ["apr"]].pivot_table(
index="CURVE_FEE", columns=[v for v in var_list if v != x_var], values=["apr"], aggfunc="count"
)
matrix_count.columns.names = [short_variable_names[v] if v else v for v in matrix_count.columns.names]
display(matrix_count)
# %%
print("return")
matrix = df2.loc[idx, var_list + ["apr"]].pivot_table(
index="CURVE_FEE", columns=[v for v in var_list if v != x_var], values=["apr"], aggfunc="mean"
)
matrix.columns = matrix.columns.map(lambda x: f"{short_variable_names[var_list[1]]}={x[1]:,.1%}")
# matrix.index = matrix.index.map(lambda x: f"{x:,.1%}")
matrix.index = matrix.index.map(lambda x: f"{short_variable_names['CURVE_FEE']}={x:,.1%}")
matrix.index.name = ""
matrix = matrix.applymap(lambda x: f"{x:,.2%}")
matrix.columns.names = [short_variable_names[v] if v else v for v in matrix.columns.names]
display(matrix)
# display(matrix.style
# .format(
# subset=["apr"],
# formatter="{:.2%}",
# )
# )
# %%
# range in trade volume
if matrix_count.max().max() > 1:
print("range in total_volume as a fraction of the mean for each combination:")
matrix = df2.loc[idx, ["CURVE_FEE", "DAILY_VOLUME_PERCENTAGE_OF_LIQUIDITY", "total_volume"]].pivot_table(
index="CURVE_FEE",
columns="DAILY_VOLUME_PERCENTAGE_OF_LIQUIDITY",
values=["total_volume"],
aggfunc=["min", "max", "mean"],
)
# normalize min and max in terms of mean
matrix[("min", "total_volume")] = matrix[("min", "total_volume")] / matrix[("mean", "total_volume")]
matrix[("max", "total_volume")] = matrix[("max", "total_volume")] / matrix[("mean", "total_volume")]
# replace values with a string representing normalized_min-normalized_max
normalized_min = matrix[("min", "total_volume")]
normalized_max = matrix[("max", "total_volume")]
matrix_formatted = pd.DataFrame(index=matrix.index, columns=normalized_min.columns)
# Iterate through each column
for col in matrix[("mean", "total_volume")].columns:
matrix_formatted[col] = (
matrix[("min", "total_volume")][col].apply(lambda x: f"{x:.3f}")
+ "-"
+ matrix[("max", "total_volume")][col].apply(lambda x: f"{x:.3f}")
)
# Now matrix_formatted contains the string representation of normalized_min-normalized_max
display(matrix_formatted)
# %%
# parse variables
variables_to_check_for_variability = [
"CURVE_FEE",
"FLAT_FEE",
"MINIMUM_TRADE_DAYS",
"DAILY_VOLUME_PERCENTAGE_OF_LIQUIDITY",
]
most_variable = ""
least_variable = ""
for variable in variables_to_check_for_variability:
num_unique = df2[variable].nunique()
print(f"{variable} has {num_unique} unique values")
if most_variable == "":
most_variable = variable
if least_variable == "":
least_variable = variable
if num_unique > df2[most_variable].nunique():
most_variable = variable
if num_unique < df2[least_variable].nunique():
least_variable = variable
print(f"most variable is {most_variable}")
print(f"least variable is {least_variable}")
# %%
# little 1-d table
matrix = df2.loc[idx, [most_variable, "apr"]].pivot_table(columns=most_variable, values=["apr"], aggfunc="mean")
matrix_formatted = matrix.copy()
column_index = matrix.columns
column_index.name = ""
short_name = short_variable_names[most_variable]
fmt = ",.1%" if short_name != "MINIMUM_TRADE_DAYS" else ",.0f"
column_index = matrix.columns.map(lambda x: f"{short_name}={x:,.0f}")
matrix_formatted.columns = column_index
matrix_formatted = matrix_formatted.applymap(lambda x: f"{x:,.2%}")
matrix_formatted.set_index(pd.Index(name="", data=["LP profitability"]), inplace=True)
display(matrix_formatted)
# %%
# little matrix
matrix = df2.loc[idx, [least_variable, most_variable, "apr"]].pivot_table(
index=least_variable, columns=most_variable, values=["apr"], aggfunc="mean"
)
print("lil matrix, apr is the value in the middle")
matrix_formatted = matrix.copy()
matrix_formatted.columns = matrix.columns.map(lambda x: f"{short_variable_names[most_variable]}={x[1]:,.1%}")
matrix_formatted.index = matrix.index.map(lambda x: f"{x:,.1%}")
matrix_formatted = matrix_formatted.applymap(lambda x: f"{x:,.2%}")
matrix_formatted = matrix_formatted.reset_index(drop=False)
cols = list(matrix_formatted.columns)
cols[0] = short_variable_names[least_variable]
matrix_formatted.columns = cols
display(matrix_formatted.style.hide(axis="index"))
# %%
# plot APR against most_variable
plot_data = copy(df2.loc[idx, :]).sort_values(by=most_variable)
plt.scatter(plot_data.loc[:, most_variable], plot_data.loc[:, "apr"], label="LP return")
plt.xlabel(short_variable_names[most_variable])
plt.ylabel("Return (APR)")
plt.gca().yaxis.set_major_formatter(ticker.PercentFormatter(xmax=1.0))
ylim = plt.gca().get_ylim()
ylim = np.floor(ylim[0] * 1000) / 1000, np.ceil(ylim[1] * 1000) / 1000
plt.gca().set_ylim(ylim)
yticks = np.arange(min(ylim[0], 0.034), ylim[1] + 0.001, 0.001) # 0.1% increment
plt.gca().set_yticks(yticks)
x_vars = plot_data.loc[:, most_variable].values
m, b = np.polyfit(x_vars, plot_data.loc[:, "apr"], 1)
x_vars_with_zero = np.append(x_vars, 0)
y_fit = m * x_vars_with_zero + b
plt.plot(x_vars_with_zero, y_fit, color="orange")
# plot horizontal line
plt.axhline(0.035, color="red", label="Vault variable return", alpha=1, linestyle="--")
plt.title(f"LP Profitability vs. {short_variable_names[most_variable]}")
plt.legend()
plt.show()
# %%
# plot experiment_stats[experiment_id, "total_volume"] vs. "DAILY_VOLUME_PERCENTAGE_OF_LIQUIDITY"
plot_data = copy(df2.loc[idx, :])
y_data = [experiment_stats.loc[x, "total_volume"] for x in plot_data.loc[:, "EXPERIMENT_ID"]]
plot_data["total_volume"] = y_data
x_data = plot_data.loc[:, "DAILY_VOLUME_PERCENTAGE_OF_LIQUIDITY"]
p = plt.scatter(x_data, y_data, label="total_volume")
color = p.get_facecolor()
p.set_edgecolor(color)
p.set_facecolor("none")
plt.xlabel("target_volume")
plt.ylabel("total_volume")
# plt.gca().yaxis.set_major_formatter(ticker.PercentFormatter(xmax=1.0))
plt.gca().xaxis.set_major_formatter(ticker.PercentFormatter(xmax=1.0))
plt.title(f"total_volume vs. target_volume")
plt.show()
# groupby DAILY_VOLUME_PERCENTAGE_OF_LIQUIDITY, show min and max of total_volume
minmaxvol = (
plot_data.groupby("DAILY_VOLUME_PERCENTAGE_OF_LIQUIDITY")
.agg(
min_total_volume=("total_volume", "min"),
max_total_volume=("total_volume", "max"),
)
.reset_index()
)
minmaxvol.rename(columns={"DAILY_VOLUME_PERCENTAGE_OF_LIQUIDITY": "target_volume"}, inplace=True)
minmaxvol["max_vs_min"] = minmaxvol.max_total_volume - minmaxvol.min_total_volume
minmaxvol["max_vs_min_pct"] = minmaxvol.max_vs_min / minmaxvol.min_total_volume
display(
minmaxvol.style.hide(axis="index")
.format(
subset=["min_total_volume", "max_total_volume", "max_vs_min", "max_vs_min_pct"],
formatter="{:" + FLOAT_FMT + "}",
)
.format(subset=["target_volume", "max_vs_min_pct"], formatter="{:,.2%}")
)
# %%
# plot APR vs. volume for given curve and flat fees
plot_data = copy(df2.loc[idx, :])
records = []
for curve_fee in np.sort(df2.loc[idx, "CURVE_FEE"].unique()):
for flat_fee in np.sort(df2.loc[idx, "FLAT_FEE"].unique()):
subidx = (plot_data.CURVE_FEE == curve_fee) & (plot_data.FLAT_FEE == flat_fee)
print(f"num={subidx.sum()}")
x_data = plot_data.loc[subidx, "DAILY_VOLUME_PERCENTAGE_OF_LIQUIDITY"]
# x_data = [experiment_stats.loc[x,"total_volume"] for x in plot_data.loc[subidx, "EXPERIMENT_ID"]]
y_data = plot_data.loc[subidx, "apr"]
p = plt.scatter(
x_data,
y_data,
label=f"curve_fee={curve_fee:.2%}, flat_fee={flat_fee:.2%}",
alpha=1,
)
plt.xlabel(short_variable_names["DAILY_VOLUME_PERCENTAGE_OF_LIQUIDITY"])
plt.ylabel("Return (APR)")
plt.gca().yaxis.set_major_formatter(ticker.PercentFormatter(xmax=1.0))
ylim = plt.gca().get_ylim()
ylim = np.floor(ylim[0] * 1000) / 1000, np.ceil(ylim[1] * 1000) / 1000
plt.gca().set_ylim(ylim)
yticks = np.arange(min(ylim[0], 0.034), ylim[1] + 0.001, 0.001) # 0.1% increment
plt.gca().set_yticks(yticks)
# use sm to get linear regression line of best fit
model = sm.OLS(y_data, sm.add_constant(x_data)).fit()
# plot linear regression line
# plt.plot(x_vars_with_zero, y_fit, color='orange')
plt.plot(x_data, model.predict(sm.add_constant(x_data)), color="orange")
plt.axhline(0.035, color="red", label="Vault variable return", alpha=1, linestyle="--")
plt.title(f"LP Profitability vs. {short_variable_names['DAILY_VOLUME_PERCENTAGE_OF_LIQUIDITY']}")
plt.legend()
plt.show()
slope = model.params[1]
records.append([curve_fee, flat_fee, slope])
# %%
df3 = pd.DataFrame(records, columns=["CURVE_FEE", "FLAT_FEE", "SLOPE"])
# df3 = df3.set_index(["CURVE_FEE","FLAT_FEE"])
display(df3)
display(df3.pivot(index="FLAT_FEE", columns="CURVE_FEE", values="SLOPE"))
for curve_fee in np.sort(df2.loc[idx, "CURVE_FEE"].unique()):
subidx = df3.CURVE_FEE == curve_fee
x_data = df3.loc[subidx, "FLAT_FEE"]
y_data = df3.loc[subidx, "SLOPE"]
p = plt.scatter(x_data, y_data, label=f"curve_fee={curve_fee:.2%}")
plt.xlabel(short_variable_names["FLAT_FEE"])
plt.ylabel("Slope")
plt.gca().yaxis.set_major_formatter(ticker.PercentFormatter(xmax=1.0))
plt.legend()
plt.title(f"Slope vs. {short_variable_names['FLAT_FEE']}")
plt.show()
for flat_fee in np.sort(df2.loc[idx, "FLAT_FEE"].unique()):
subidx = df3.FLAT_FEE == flat_fee
x_data = df3.loc[subidx, "CURVE_FEE"]
y_data = df3.loc[subidx, "SLOPE"]
p = plt.scatter(x_data, y_data, label=f"flat_fee={flat_fee:.2%}")
plt.xlabel(short_variable_names["CURVE_FEE"])
plt.ylabel("Slope")
plt.gca().yaxis.set_major_formatter(ticker.PercentFormatter(xmax=1.0))
plt.legend()
plt.title(f"Slope vs. {short_variable_names['CURVE_FEE']}")
plt.show()
# %%
for abs_fixed_v_variable in np.sort(df2.loc[idx, "ABS_FIXED_V_VARIABLE"].apply(lambda x: round(x, 3)).unique()):
df2temp = copy(df2.loc[idx, :])
subidx = df2temp.ABS_FIXED_V_VARIABLE.apply(lambda x: round(x, 3)) == abs_fixed_v_variable
print(f"num={subidx.sum()}")
p = plt.scatter(
df2temp.loc[subidx, "CURVE_FEE_X_DAILY_VOLUME"],
df2temp.loc[subidx, "apr"],
label=f"abs_fixed_v_variable={abs_fixed_v_variable:.1%}",
alpha=0.5,
)
color = p.get_facecolor()
p.set_edgecolor(color)
p.set_facecolor("none")
predicted_values = model.predict(df2temp.loc[subidx, vars])
# plt.plot(
# df2temp.loc[subidx, "CURVE_FEE_X_DAILY_VOLUME"],
# predicted_values,
# color=color,
# # label=f"regression fit ({abs_fixed_v_variable:.1%})",
# )
X_with_const = add_constant(df2temp.loc[subidx, "CURVE_FEE_X_DAILY_VOLUME"])
temp_model = sm.OLS(df2temp.loc[subidx, "apr"], X_with_const).fit()
predictions = temp_model.predict(X_with_const)
plt.plot(df2temp.loc[subidx, "CURVE_FEE_X_DAILY_VOLUME"], predictions, color=color)
plt.gca().yaxis.set_major_formatter(ticker.PercentFormatter(xmax=1.0))
plt.xlabel("CURVE_FEE_X_DAILY_VOLUME")
plt.ylabel("apr")
plt.legend()
plt.show()
# %%
# prepare rate paths
min_timestamp_by_experiment = rate_paths.groupby("experiment")["timestamp"].min()
rate_paths.loc[:, "adjusted_timestamp"] = (
rate_paths["timestamp"] - min_timestamp_by_experiment[rate_paths["experiment"]].values
)
rate_paths["adjusted_timestamp_seconds"] = rate_paths["adjusted_timestamp"].dt.total_seconds()
rate_paths["adjusted_timestamp_days"] = rate_paths["adjusted_timestamp_seconds"] / (60 * 60 * 24)
rate_paths["fixed_rate"] = rate_paths["fixed_rate"].astype(float)
# %%
# plot rate paths
fig = plt.figure(figsize=(16 / 2, 9 / 2))
ax = plt.gca()
unique_experiments = rate_paths["experiment"].unique()
rate_volatility_records = []
for experiment in unique_experiments[:20]:
idx = rate_paths["experiment"] == experiment
rate_paths.loc[idx].plot(x="adjusted_timestamp_days", y="fixed_rate", label=experiment, alpha=0.2, ax=ax)
rate_volatility = rate_paths.loc[idx, "fixed_rate"].std()
volume = df1.loc[df1.experiment == experiment, "DAILY_VOLUME_PERCENTAGE_OF_LIQUIDITY"].iloc[0]
fee = df1.loc[df1.experiment == experiment, "CURVE_FEE"].iloc[0]
# print(f"{rate_volatility=}")
rate_volatility_records.append([experiment, rate_volatility, volume, fee])
# disable legend
ax.legend().set_visible(False)
ax.xaxis.set_major_formatter(ticker.FuncFormatter(lambda x, _: f"{x:.0f}"))
ax.yaxis.set_major_formatter(ticker.PercentFormatter(xmax=1.0))
ylim = plt.gca().get_ylim()
ylim = 0, ylim[1]
plt.gca().set_ylim(ylim)
inc = 0.005 # 0.5% increment
yticks = np.arange(ylim[0], ylim[1] + inc, inc)
plt.gca().set_yticks(yticks)
plt.xlabel("Time (days)")
plt.xticks(rotation=45)
plt.xticks(np.append(np.arange(0, 360, 30), 365))
plt.ylabel("Fixed Rate")
plt.ylim(0, 0.06)
plt.show()
# %%
# plot rate volatility vs. volume
rate_volatility_df = pd.DataFrame(rate_volatility_records, columns=["experiment", "rate_volatility", "volume", "fee"])
display(rate_volatility_df.style.hide(axis="index"))
rate_volatility_df.volume = rate_volatility_df.volume.astype(float)
corr = rate_volatility_df.corr()["rate_volatility"]["volume"]
rate_volatility_df.plot(x="volume", y="rate_volatility", kind="scatter", label=f"correlation={corr:.2%}")
display(corr)
plt.legend(loc="upper left")
plt.title("Rate Volatility vs. Volume")
plt.show()
# %%
# rate historgrams
bins = np.arange(0.0175, 0.055, 0.0025)
# histogram of starting rate
fig = plt.figure()
first_row_in_each_experiment = rate_paths.groupby("experiment").first()
h1 = first_row_in_each_experiment["fixed_rate"].hist(label="starting fixed rate", bins=bins)
# histogram of ending rate
# fig = plt.figure()
last_row_in_each_experiment = rate_paths.groupby("experiment").last()
h2 = last_row_in_each_experiment["fixed_rate"].hist(label="ending fixed rate", bins=bins, alpha=0.5)
plt.legend()
plt.show()
# %%
# check bad experiment outcomes
delta = 0.00005
MIN_RATE = 0.035 - delta
MAX_RATE = 0.035 + delta
rate_paths["day"] = rate_paths["timestamp"].dt.day
agg_data = rate_paths.groupby("day")["fixed_rate"].agg(["mean", "std"]).reset_index()
rates_by_day_and_experiment = rate_paths.groupby(["day", "experiment"])["fixed_rate"].mean().reset_index()
good_ending_rates = (last_row_in_each_experiment.fixed_rate > MIN_RATE) & (
last_row_in_each_experiment.fixed_rate < MAX_RATE
)
filtered_rows = last_row_in_each_experiment.loc[~good_ending_rates, :]
bad_experiments = list(filtered_rows.index)
print(f"bad experiments defined as ending rates outside of {MIN_RATE:.3%} and {MAX_RATE:.3%}:")
print(f" we have {len(bad_experiments)} bad experiments: {bad_experiments}")
if len(bad_experiments) > 0:
# plot rate paths for bad experiments
for experiment in bad_experiments:
idx = rates_by_day_and_experiment["experiment"] == experiment
plt.plot(
rates_by_day_and_experiment.loc[idx, "day"],
rates_by_day_and_experiment.loc[idx, "fixed_rate"],
label=experiment,
)
plt.xlabel("Day")
plt.ylabel("Ending Fixed Rate")
plt.show()
# %%
# inspect results of a specific experiment
experiment = 0
df1temp = df1.loc[df1["experiment"] == experiment]
display(df1temp)
df2temp = df2.loc[df2["experiment"] == experiment]
display(
df2temp.style.format(
subset=[col for col in df2temp.columns if df2temp.dtypes[col] == "float64" and col not in ["hpr", "apr"]],
formatter="{:" + FLOAT_FMT + "}",
)
.hide(axis="index")
.format(
subset=["hpr", "apr"],
formatter="{:.2%}",
)
)
# %%
# %%
# inspect pool_info of a specific experiment
pool_info = pd.read_parquet("results/exp_five/4/pool_info.parquet")
pool_info
# %%
# inspect current_wallet of a specific experiment
current_wallet = pd.read_parquet("results/exp_five/4/current_wallet.parquet")
current_wallet
# %%