-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathPlot.py
66 lines (50 loc) · 2.12 KB
/
Plot.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
import json
import matplotlib.pyplot as plt
import numpy as np
Data_Dir = './measurements'
Optimizers = ['Adagrad', 'Adam', 'HB', 'RMSProp', 'SGD']
Array_measurements = {}
for i in Optimizers:
measurements = []
for j in range(1,6):
num = str(j + int ('0'))
read_file = open(Data_Dir+'/'+i+'_'+num+'.json', 'r')
string_dict= json.load(read_file)
string_dict = string_dict.replace("\'", "\"")
dictionary = json.loads(string_dict)
measurements.append(dictionary)
loss = [measurements[j]['loss'] for j in range(5)]
min_loss = [min(idx) for idx in zip(*loss)]
max_loss = [max(idx) for idx in zip(*loss)]
mean_loss = np.divide([sum(idx) for idx in zip(*loss)],5)
val_loss = [measurements[j]['val_loss'] for j in range(5)]
min_val_loss = [min(idx) for idx in zip(*val_loss)]
max_val_loss = [max(idx) for idx in zip(*val_loss)]
mean_val_loss = np.divide([sum(idx) for idx in zip(*val_loss)],5)
acc = [measurements[j]['accuracy'] for j in range(5)]
min_acc = [min(idx) for idx in zip(*acc)]
max_acc = [max(idx) for idx in zip(*acc)]
mean_acc = np.divide([sum(idx) for idx in zip(*acc)],5)
val_acc = [measurements[j]['val_accuracy'] for j in range(5)]
min_val_acc = [min(idx) for idx in zip(*val_acc)]
max_val_acc = [max(idx) for idx in zip(*val_acc)]
mean_val_acc = np.divide([sum(idx) for idx in zip(*val_acc)],5)
Array_measurements[i]={
'loss': mean_loss,
'val_loss': mean_val_loss,
'acc': mean_acc,
'val_acc': mean_val_acc,
}
t = np.arange(0, 250, 1)
fig=plt.figure()
ax=fig.add_subplot(111)
ax.plot(t,Array_measurements['SGD']['loss'],c='g',ls='-',label='SGD')
ax.plot(t,Array_measurements['HB']['loss'],c='k',ls='-',label='SGD with momentum')
ax.plot(t,Array_measurements['Adagrad']['loss'],c='b',ls='-',label='AdaGrad',fillstyle='none')
ax.plot(t,Array_measurements['RMSProp']['loss'],c='r',ls='-',label='RMSProp')
ax.plot(t,Array_measurements['Adam']['loss'],ls='-',label='Adam',fillstyle='none')
plt.title("Training Loss")
plt.ylabel('Loss')
plt.xlabel('Epochs')
plt.legend()
plt.show()