Skip to content

Commit 644d40e

Browse files
committed
readme
1 parent 8fbc11d commit 644d40e

File tree

1 file changed

+5
-5
lines changed

1 file changed

+5
-5
lines changed

README.md

Lines changed: 5 additions & 5 deletions
Original file line numberDiff line numberDiff line change
@@ -10,6 +10,8 @@ Benjamin Yu, Vincenzo Lordi, Daniel Schwalbe-Koda. "Maximizing Efficiency of Dat
1010
- All the raw data for plotting the notebooks can be downloaded using the `download.sh` script.
1111
- The Jupyter Notebooks in `nbs` contain all the code required to reproduce the analysis and the plots shown in the manuscript.
1212

13+
The algorithms are implemented under the [QUESTS package](https://github.com/dskoda/quests).
14+
1315
## Installing and running
1416

1517
To reproduce the results from the manuscript, first create a new Python environment using your preferred virtual environment (e.g., `venv` or `conda`).
@@ -85,7 +87,7 @@ The tarfile contains files of the following formats:
8587

8688
### Citing
8789

88-
If you use the algorithms/benchmarks for compressing datasets in this work, please cite the following preprint:
90+
If you use the algorithms/benchmarks for compressing datasets in this work, please cite the following papers:
8991

9092
```bibtex
9193
@article{yu2025compression,
@@ -94,11 +96,7 @@ If you use the algorithms/benchmarks for compressing datasets in this work, plea
9496
year = {2025},
9597
journal = {arXiv},
9698
}
97-
```
98-
99-
If you use QUESTS or its data/examples in a publication, please cite the following paper:
10099
101-
```bibtex
102100
@article{schwalbekoda2025information,
103101
title = {Model-free estimation of completeness, uncertainties, and outliers in atomistic machine learning using information theory},
104102
author = {Schwalbe-Koda, Daniel and Hamel, Sebastien and Sadigh, Babak and Zhou, Fei and Lordi, Vincenzo},
@@ -111,6 +109,8 @@ If you use QUESTS or its data/examples in a publication, please cite the followi
111109
}
112110
```
113111

112+
The code used to analyze and compress the dataset is available under the [QUESTS](https://github.com/dskoda/quests) package.
113+
114114
## License
115115

116116
This repository is distributed under the following license: MIT

0 commit comments

Comments
 (0)