forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathconv_op_eigen.cc
227 lines (200 loc) · 8.5 KB
/
conv_op_eigen.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
#include "Eigen/Core"
#include "caffe2/utils/eigen_utils.h"
#if EIGEN_VERSION_AT_LEAST(3, 3, 0)
#include "caffe2/core/context.h"
#include "caffe2/core/operator.h"
#include "caffe2/operators/conv_pool_op_base.h"
#include "unsupported/Eigen/CXX11/Tensor"
namespace caffe2 {
template <typename T>
class EigenConvOp final : public ConvPoolOpBase<CPUContext> {
public:
USE_CONV_POOL_BASE_FUNCTIONS(CPUContext);
explicit EigenConvOp(const OperatorDef& operator_def, Workspace* ws)
: ConvPoolOpBase<CPUContext>(operator_def, ws) {
OPERATOR_NEEDS_FEATURE(group_ == 1, "Group convolution not supported yet.");
}
// NOLINTNEXTLINE(modernize-use-equals-default)
~EigenConvOp() override {}
bool RunOnDeviceWithOrderNCHW() override;
bool RunOnDeviceWithOrderNHWC() override;
private:
INPUT_TAGS(INPUT, FILTER, BIAS);
};
// The NCHW implementation: we do explicit transposes before and after, which
// are not ideal but provides a compatible path instead of throwing the error.
template <typename T>
bool EigenConvOp<T>::RunOnDeviceWithOrderNCHW() {
auto& X = Input(INPUT);
auto& filter = Input(FILTER);
auto* Y = Output(0);
const int N = X.dim32(0), C = X.dim32(1), H = X.dim32(2), W = X.dim32(3);
CAFFE_ENFORCE(4 == filter.dim());
const int M = filter.dim32(0);
CAFFE_ENFORCE(filter.dim32(1) == C);
CAFFE_ENFORCE(filter.dim32(2) == kernel_h());
CAFFE_ENFORCE(filter.dim32(3) == kernel_w());
ConvPoolOpBase<CPUContext>::SetOutputSize(X, Y, filter.dim32(0));
Eigen::array<int64_t, 4> kernel_shuffles
{ {int64_t(2), int64_t(3), int64_t(1), int64_t(0)} };
Eigen::array<int64_t, 4> input_shuffles
{ {int64_t(0), int64_t(2), int64_t(3), int64_t(1)} };
Eigen::Tensor<T, 4, Eigen::RowMajor> filter_tensor =
Eigen::TensorMap<Eigen::Tensor<T, 4, Eigen::RowMajor>>(
// NOLINTNEXTLINE(cppcoreguidelines-pro-type-const-cast)
const_cast<T*>(filter.template data<T>()),
M,
C,
kernel_h(),
kernel_w())
.shuffle(kernel_shuffles);
Eigen::Tensor<T, 4, Eigen::RowMajor> X_tensor =
Eigen::TensorMap<Eigen::Tensor<T, 4, Eigen::RowMajor>>(
// NOLINTNEXTLINE(cppcoreguidelines-pro-type-const-cast)
const_cast<T*>(X.template data<T>()), N, C, H, W)
.shuffle(input_shuffles);
// For Eigen, the definition of row and col actually correspond to width
// and height instead of the other way round, so notice how we pass the
// stride, pad and dilation values.
typedef typename Eigen::internal::traits<
Eigen::Tensor<T, 4, Eigen::RowMajor>>::Index TensorIndex;
Eigen::array<Eigen::IndexPair<TensorIndex>, 1> contract_dims;
contract_dims[0] = Eigen::IndexPair<TensorIndex>(1, 0);
Eigen::DSizes<TensorIndex, 2> pre_contract_dims;
pre_contract_dims[1] = kernel_h() * kernel_w() * C;
pre_contract_dims[0] = Y->numel() / M;
Eigen::DSizes<TensorIndex, 2> kernel_dims;
kernel_dims[0] = kernel_h() * kernel_w() * C;
kernel_dims[1] = M;
Eigen::array<TensorIndex, 4> bcast_dims;
bcast_dims[0] = N;
bcast_dims[1] = Y->dim32(1);
bcast_dims[2] = Y->dim32(2);
bcast_dims[3] = 1;
Eigen::Tensor<T, 4, Eigen::RowMajor> Y_tensor(
Y->dim32(0), Y->dim32(2), Y->dim32(3), Y->dim32(1));
Y_tensor = X_tensor
.extract_image_patches(
kernel_w(),
kernel_h(),
stride_w(),
stride_h(),
dilation_w(),
dilation_h(),
1,
1,
pad_l(),
pad_r(),
pad_t(),
pad_b(),
0)
.reshape(pre_contract_dims)
.contract(filter_tensor.reshape(kernel_dims), contract_dims)
.reshape(Y_tensor.dimensions());
if (InputSize() == 3) {
auto& bias = Input(BIAS);
CAFFE_ENFORCE(1 == bias.dim());
CAFFE_ENFORCE(bias.dim32(0) == M);
// It seems that the bias broadcast is still slower so let's do the
// following for now.
EigenArrayMap<T> Y_arr(
Y_tensor.data(), static_cast<int64_t>(M), Y->numel() / M);
ConstEigenVectorArrayMap<T> bias_arr(bias.template data<T>(), M);
Y_arr = Y_arr.colwise() + bias_arr;
}
// Do a last transpose.
Eigen::array<int64_t, 4> output_shuffles
{ {int64_t(0), int64_t(3), int64_t(1), int64_t(2) } };
Eigen::TensorMap<Eigen::Tensor<T, 4, Eigen::RowMajor>>(
Y->template mutable_data<T>(), N, M, Y->dim32(2), Y->dim32(3)) =
Y_tensor.shuffle(output_shuffles);
return true;
}
template <typename T>
bool EigenConvOp<T>::RunOnDeviceWithOrderNHWC() {
auto& X = Input(INPUT);
auto& filter = Input(FILTER);
auto* Y = Output(0);
const int N = X.dim32(0), H = X.dim32(1), W = X.dim32(2), C = X.dim32(3);
CAFFE_ENFORCE(4 == filter.dim());
const int M = filter.dim32(0);
CAFFE_ENFORCE(filter.dim32(1) == kernel_h());
CAFFE_ENFORCE(filter.dim32(2) == kernel_w());
CAFFE_ENFORCE(filter.dim32(3) == C);
ConvPoolOpBase<CPUContext>::SetOutputSize(X, Y, filter.dim32(0));
// Eigen expects filter to be of shape (kernel_h, kernel_w, C, M) for
// optimization purposes, so we will create a temp one.
Eigen::Array<T, Eigen::Dynamic, Eigen::Dynamic> temp_filter(
M, kernel_h() * kernel_w() * C);
temp_filter = ConstEigenArrayMap<T>(
filter.template data<T>(), kernel_h() * kernel_w() * C, M)
.transpose();
// Create tensor maps, and call spatial convolution.
// TODO(jiayq): right now we const cast away the const pointer, but we will
// need to figure out how to properly do a const tensormap.
Eigen::TensorMap<Eigen::Tensor<T, 4, Eigen::RowMajor>> X_tensor(
// NOLINTNEXTLINE(cppcoreguidelines-pro-type-const-cast)
const_cast<T*>(X.template data<T>()), N, H, W, C);
Eigen::TensorMap<Eigen::Tensor<T, 4, Eigen::RowMajor>> Y_tensor(
Y->template mutable_data<T>(), N, Y->dim32(1), Y->dim32(2), M);
Eigen::TensorMap<Eigen::Tensor<T, 4, Eigen::RowMajor>> filter_tensor(
// NOLINTNEXTLINE(cppcoreguidelines-pro-type-const-cast)
const_cast<T*>(temp_filter.data()), kernel_h(), kernel_w(), C, M);
// For Eigen, the definition of row and col actually correspond to width
// and height instead of the other way round, so notice how we pass the
// stride, pad and dilation values.
typedef typename Eigen::internal::traits<
Eigen::Tensor<T, 4, Eigen::RowMajor>>::Index TensorIndex;
Eigen::array<Eigen::IndexPair<TensorIndex>, 1> contract_dims;
contract_dims[0] = Eigen::IndexPair<TensorIndex>(1, 0);
Eigen::DSizes<TensorIndex, 2> pre_contract_dims;
pre_contract_dims[1] = kernel_h() * kernel_w() * C;
pre_contract_dims[0] = Y->numel() / M;
Eigen::DSizes<TensorIndex, 2> kernel_dims;
kernel_dims[0] = kernel_h() * kernel_w() * C;
kernel_dims[1] = M;
Eigen::array<TensorIndex, 4> bcast_dims;
bcast_dims[0] = N;
bcast_dims[1] = Y->dim32(1);
bcast_dims[2] = Y->dim32(2);
bcast_dims[3] = 1;
Y_tensor = X_tensor
.extract_image_patches(
kernel_w(),
kernel_h(),
stride_w(),
stride_h(),
dilation_w(),
dilation_h(),
1,
1,
pad_l(),
pad_r(),
pad_t(),
pad_b(),
0)
.reshape(pre_contract_dims)
.contract(filter_tensor.reshape(kernel_dims), contract_dims)
.reshape(Y_tensor.dimensions());
if (InputSize() == 3) {
auto& bias = Input(BIAS);
CAFFE_ENFORCE(1 == bias.dim());
CAFFE_ENFORCE(bias.dim32(0) == M);
Eigen::TensorMap<Eigen::Tensor<T, 4, Eigen::RowMajor>> bias_tensor(
// NOLINTNEXTLINE(cppcoreguidelines-pro-type-const-cast)
const_cast<T*>(bias.template data<T>()), 1, 1, 1, M);
// It seems that the bias broadcast is still slower so let's do the
// following for now.
EigenArrayMap<T> Y_arr(
Y->template mutable_data<T>(), static_cast<int64_t>(M), Y->numel() / M);
ConstEigenVectorArrayMap<T> bias_arr(bias.template data<T>(), M);
Y_arr = Y_arr.colwise() + bias_arr;
}
return true;
}
REGISTER_CPU_OPERATOR_WITH_ENGINE(Conv, EIGEN, EigenConvOp<float>);
REGISTER_CPU_OPERATOR_WITH_ENGINE(Conv1D, EIGEN, EigenConvOp<float>);
REGISTER_CPU_OPERATOR_WITH_ENGINE(Conv2D, EIGEN, EigenConvOp<float>);
REGISTER_CPU_OPERATOR_WITH_ENGINE(Conv3D, EIGEN, EigenConvOp<float>);
} // namespace caffe2
#endif