forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathconv_transpose_op_cudnn.cc
861 lines (812 loc) · 28 KB
/
conv_transpose_op_cudnn.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
#include "caffe2/operators/conv_transpose_op.h"
#include <vector>
#include "caffe2/core/context_gpu.h"
#include "caffe2/core/cudnn_wrappers.h"
#include "caffe2/operators/conv_op_cache_cudnn.h"
#include "caffe2/operators/op_utils_cudnn.h"
namespace caffe2 {
class CudnnConvTransposeOpBase : public ConvTransposeUnpoolBase<CUDAContext> {
public:
template <class... Args>
explicit CudnnConvTransposeOpBase(Args&&... args)
: ConvTransposeUnpoolBase<CUDAContext>(std::forward<Args>(args)...),
cudnn_wrapper_(&context_),
cudnn_ws_nbytes_limit_(OperatorBase::GetSingleArgument<size_t>(
"ws_nbytes_limit",
kCONV_CUDNN_WORKSPACE_LIMIT_BYTES)),
exhaustive_search_(
OperatorBase::GetSingleArgument<int>("exhaustive_search", 0)),
deterministic_(
OperatorBase::GetSingleArgument<int>("deterministic", 0)),
cudnn_state_(OperatorBase::GetSingleArgument<int>("cudnn_state", 0)),
force_algo_(OperatorBase::GetRepeatedArgument<int>(
"force_algo",
vector<int>{-1, -1, -1})),
enable_tensor_core_(
OperatorBase::GetSingleArgument<bool>("enable_tensor_core", 1)) {
CAFFE_ENFORCE(!deterministic_ || !exhaustive_search_);
bool individual_force_algo = OperatorBase::HasArgument("force_algo_fwd") ||
OperatorBase::HasArgument("force_algo_dgrad") ||
OperatorBase::HasArgument("force_algo_wgrad");
if (OperatorBase::HasArgument("force_algo")) {
CAFFE_ENFORCE(
!individual_force_algo,
"Cannot specify both force_algo and any of",
"force_algo_fwd, force_algo_dgrad, force_algo_wgrad");
} else {
force_algo_ = std::vector<int>{-1, -1, -1};
force_algo_[ALGO_FWD] =
OperatorBase::GetSingleArgument<int>("force_algo_fwd", -1);
force_algo_[ALGO_DGRAD] =
OperatorBase::GetSingleArgument<int>("force_algo_dgrad", -1);
force_algo_[ALGO_WGRAD] =
OperatorBase::GetSingleArgument<int>("force_algo_wgrad", -1);
}
CUDNN_ENFORCE(cudnnCreateTensorDescriptor(&bottom_desc_));
CUDNN_ENFORCE(cudnnCreateFilterDescriptor(&filter_desc_));
if (InputSize() == 3) {
CUDNN_ENFORCE(cudnnCreateTensorDescriptor(&bias_desc_));
CUDNN_ENFORCE(cudnnCreateTensorDescriptor(&top_desc_for_bias_));
}
CUDNN_ENFORCE(cudnnCreateTensorDescriptor(&top_desc_));
CUDNN_ENFORCE(cudnnCreateConvolutionDescriptor(&conv_desc_));
}
~CudnnConvTransposeOpBase() override {
CUDNN_ENFORCE(cudnnDestroyTensorDescriptor(bottom_desc_));
CUDNN_ENFORCE(cudnnDestroyFilterDescriptor(filter_desc_));
if (InputSize() == 3) {
CUDNN_ENFORCE(cudnnDestroyTensorDescriptor(bias_desc_));
CUDNN_ENFORCE(cudnnDestroyTensorDescriptor(top_desc_for_bias_));
}
CUDNN_ENFORCE(cudnnDestroyTensorDescriptor(top_desc_));
CUDNN_ENFORCE(cudnnDestroyConvolutionDescriptor(conv_desc_));
}
protected:
void SetTensor4DDescriptorWithGroup(
const cudnnDataType_t data_type,
const int N,
const int C,
const int H,
const int W,
cudnnTensorDescriptor_t* desc) const {
#if CUDNN_VERSION_MIN(7, 0, 0)
const int CC = C;
#else
const int CC = C / group_;
#endif
switch (order_) {
case StorageOrder::NCHW: {
CUDNN_ENFORCE(cudnnSetTensor4dDescriptorEx(
*desc, data_type, N, CC, H, W, C * H * W, H * W, W, 1));
break;
}
case StorageOrder::NHWC: {
CUDNN_ENFORCE(cudnnSetTensor4dDescriptorEx(
*desc, data_type, N, CC, H, W, H * W * C, 1, W * C, C));
break;
}
default: {
LOG(FATAL) << "Unknown storage order: " << order_;
}
}
}
std::vector<std::int64_t> cudnn_input_dims_;
std::vector<std::int64_t> cudnn_filter_dims_;
CuDNNWrapper cudnn_wrapper_;
cudnnTensorDescriptor_t bottom_desc_;
cudnnFilterDescriptor_t filter_desc_;
cudnnTensorDescriptor_t bias_desc_;
cudnnTensorDescriptor_t top_desc_;
cudnnTensorDescriptor_t top_desc_for_bias_;
cudnnConvolutionDescriptor_t conv_desc_;
const size_t cudnn_ws_nbytes_limit_;
size_t cudnn_ws_nbytes_;
bool exhaustive_search_;
bool deterministic_;
size_t cudnn_state_;
std::vector<int> force_algo_; // stored as FWD, dFILTER, dDATA
bool enable_tensor_core_;
};
template <typename T>
class CudnnConvTransposeOp final : public CudnnConvTransposeOpBase {
public:
template <class... Args>
explicit CudnnConvTransposeOp(Args&&... args)
: CudnnConvTransposeOpBase(std::forward<Args>(args)...) {}
~CudnnConvTransposeOp() override {}
bool RunOnDevice() override;
private:
AlgorithmsCache<cudnnConvolutionBwdDataAlgo_t> data_algo_cache_;
cudnnConvolutionBwdDataAlgo_t bwd_data_algo_;
// Input: X, W, b
// Output: Y
INPUT_TAGS(INPUT, FILTER, BIAS);
};
template <typename T>
class CudnnConvTransposeGradientOp final : public CudnnConvTransposeOpBase {
public:
template <class... Args>
explicit CudnnConvTransposeGradientOp(Args&&... args)
: CudnnConvTransposeOpBase(std::forward<Args>(args)...),
no_bias_(OperatorBase::GetSingleArgument<bool>("no_bias", false)) {
CAFFE_ENFORCE(
!(no_bias_ && OutputSize() == 3),
"If bias is not present, you should not have 3 grad output.");
}
~CudnnConvTransposeGradientOp() override {}
bool RunOnDevice() override;
private:
cudnnConvolutionFwdAlgo_t algo_;
cudnnConvolutionBwdFilterAlgo_t bwd_filter_algo_;
AlgorithmsCache<cudnnConvolutionFwdAlgo_t> forward_algo_cache_;
AlgorithmsCache<cudnnConvolutionBwdFilterAlgo_t> filter_algo_cache_;
const bool no_bias_;
// input: X, W, dY
// output: dW, optionally db and dX
INPUT_TAGS(INPUT, FILTER, OUTPUT_GRAD);
OUTPUT_TAGS(FILTER_GRAD, BIAS_OR_INPUT_GRAD, INPUT_GRAD);
};
////////////////////////////////////////////////////////////////////////////////
// Implementations
////////////////////////////////////////////////////////////////////////////////
template <typename T>
bool CudnnConvTransposeOp<T>::RunOnDevice() {
auto& X = Input(INPUT);
auto& filter = Input(FILTER);
int C = 0;
switch (order_) {
case StorageOrder::NHWC:
C = filter.dim32(3) * group_;
break;
case StorageOrder::NCHW:
C = filter.dim32(1) * group_;
break;
default:
LOG(FATAL) << "Unknown storage order: " << order_;
}
auto sizes = ConvTransposeUnpoolBase<CUDAContext>::GetOutputSize(X, C);
auto* Y = Output(0, sizes, at::dtype<T>());
if (X.numel() == 0) {
VLOG(2) << "Number on elements is 0 in CudnnConvTransposeOp";
return true;
}
int N = 0, M = 0, H = 0, W = 0, H_out = 0, W_out = 0;
switch (order_) {
case StorageOrder::NHWC:
N = X.dim32(0);
H = X.dim32(1);
W = X.dim32(2);
M = X.dim32(3);
H_out = Y->dim32(1);
W_out = Y->dim32(2);
CAFFE_ENFORCE_EQ(filter.dim32(1), kernel_h());
CAFFE_ENFORCE_EQ(filter.dim32(2), kernel_w());
CAFFE_ENFORCE_EQ(filter.dim32(3), C / group_);
break;
case StorageOrder::NCHW:
N = X.dim32(0);
M = X.dim32(1);
H = X.dim32(2);
W = X.dim32(3);
H_out = Y->dim32(2);
W_out = Y->dim32(3);
CAFFE_ENFORCE_EQ(filter.dim32(1), C / group_);
CAFFE_ENFORCE_EQ(filter.dim32(2), kernel_h());
CAFFE_ENFORCE_EQ(filter.dim32(3), kernel_w());
break;
default:
LOG(FATAL) << "Unknown storage order: " << order_;
}
CAFFE_ENFORCE_EQ(M % group_, 0);
if (InputSize() == 3) {
auto& bias = Input(BIAS);
CAFFE_ENFORCE_EQ(bias.dim(), 1);
CAFFE_ENFORCE_EQ(bias.dim32(0), C);
}
// Set up the cudnn algorithms & workspace if necessary
const bool input_changed = (X.sizes() != cudnn_input_dims_);
const bool filter_changed = (filter.sizes() != cudnn_filter_dims_);
if (input_changed || filter_changed) {
VLOG(1) << "Changing the cudnn descriptor configurations.";
if (input_changed) {
cudnn_input_dims_ = X.sizes().vec();
SetTensor4DDescriptorWithGroup(
cudnnTypeWrapper<T>::type, N, M, H, W, &bottom_desc_);
}
if (filter_changed) {
cudnn_filter_dims_ = filter.sizes().vec();
#if CUDNN_VERSION_MIN(7, 0, 0)
const int MM = M;
#else
const int MM = M / group_;
#endif
CUDNN_ENFORCE(cudnnSetFilter4dDescriptor(
filter_desc_,
cudnnTypeWrapper<T>::type,
GetCudnnTensorFormat(order_),
MM,
C / group_,
kernel_h(),
kernel_w()));
if (InputSize() == 3) {
CUDNN_ENFORCE(cudnnSetTensor4dDescriptor(
bias_desc_,
GetCudnnTensorFormat(order_),
cudnnTypeWrapper<T>::type,
1,
C,
1,
1));
}
}
// Set the output
SetTensor4DDescriptorWithGroup(
cudnnTypeWrapper<T>::type, N, C, H_out, W_out, &top_desc_);
if (InputSize() == 3) {
CUDNN_ENFORCE(cudnnSetTensor4dDescriptor(
top_desc_for_bias_,
GetCudnnTensorFormat(order_),
cudnnTypeWrapper<T>::type,
N,
C,
H_out,
W_out));
}
// Set the convolution descriptor
CAFFE_ENFORCE_EQ(
pad_t(),
pad_b(),
"The current padding scheme leads to unequal padding on the top and "
"bottom, which is not supported by cudnn.");
CAFFE_ENFORCE_EQ(
pad_l(),
pad_r(),
"The current padding scheme leads to unequal padding on the left "
"and right, which is not supported by cudnn.");
// Set the convolution descriptor
#if CUDNN_VERSION_MIN(6, 0, 0)
CUDNN_ENFORCE(cudnnSetConvolution2dDescriptor(
conv_desc_,
pad_t(),
pad_l(),
stride_h(),
stride_w(),
1,
1,
CUDNN_CROSS_CORRELATION,
cudnnTypeWrapper<T>::type));
#else
CUDNN_ENFORCE(cudnnSetConvolution2dDescriptor(
conv_desc_,
pad_t(),
pad_l(),
stride_h(),
stride_w(),
1,
1,
CUDNN_CROSS_CORRELATION));
#endif
#if CUDNN_VERSION_MIN(7, 0, 0)
// enable TensorCore math if desired
enable_tensor_core_ &= TensorCoreAvailable();
if (enable_tensor_core_) {
CUDNN_ENFORCE(
cudnnSetConvolutionMathType(conv_desc_, CUDNN_TENSOR_OP_MATH));
}
// set cuDNN groups if appropriate
CUDNN_ENFORCE(cudnnSetConvolutionGroupCount(conv_desc_, group_));
#endif
if (force_algo_[ALGO_DGRAD] >= 0) {
bwd_data_algo_ = (cudnnConvolutionBwdDataAlgo_t)force_algo_[ALGO_DGRAD];
} else if (deterministic_) {
bwd_data_algo_ = CUDNN_CONVOLUTION_BWD_DATA_ALGO_1;
} else if (exhaustive_search_) {
bwd_data_algo_ =
data_algo_cache_.getAlgorithm(X.sizes(), filter.sizes(), 0, [&]() {
int returned_algo_count;
std::array<
cudnnConvolutionBwdDataAlgoPerf_t,
kNUM_CUDNN_BWD_DATA_ALGS>
data_perf_stat;
cudnn_wrapper_.with_cudnn_state(
cudnn_state_, [&](CuDNNState* state) {
state->workspace().reset();
CUDNN_ENFORCE(cudnnFindConvolutionBackwardDataAlgorithm(
state->cudnn_handle(),
filter_desc_,
bottom_desc_,
conv_desc_,
top_desc_,
kNUM_CUDNN_BWD_DATA_ALGS,
&returned_algo_count,
data_perf_stat.data()));
});
LogCuDNNPerfStats(data_perf_stat, returned_algo_count);
return data_perf_stat[0].algo;
});
} else {
constexpr int nalgo = CUDNN_CONVOLUTION_BWD_DATA_ALGO_COUNT;
int valid_algos;
cudnnConvolutionBwdDataAlgoPerf_t algos[nalgo];
CUDNN_ENFORCE(cudnnGetConvolutionBackwardDataAlgorithm_v7(
cudnn_wrapper_.inline_cudnn_handle(),
filter_desc_,
bottom_desc_,
conv_desc_,
top_desc_,
nalgo,
&valid_algos,
algos));
bool found = false;
for (int i = 0; i < valid_algos; i++) {
auto a = algos[i];
if (a.memory <= cudnn_ws_nbytes_limit_) {
bwd_data_algo_ = a.algo;
found = true;
break;
}
}
CAFFE_ENFORCE(found, "Unable to find algorithms for cuDNN backward data");
}
size_t bwd_data_ws_size;
CUDNN_ENFORCE(cudnnGetConvolutionBackwardDataWorkspaceSize(
cudnn_wrapper_.inline_cudnn_handle(),
filter_desc_,
bottom_desc_,
conv_desc_,
top_desc_,
bwd_data_algo_,
&bwd_data_ws_size));
cudnn_ws_nbytes_ = bwd_data_ws_size;
VLOG(1) << "CuDNN algorithm: " << bwd_data_algo_;
VLOG(1) << "CuDNN workspace size: " << bwd_data_ws_size;
}
const T* X_data = X.template data<T>();
const T* filter_data = filter.template data<T>();
T* Y_data = Y->template mutable_data<T>();
// Now, actually run the computation.
// Filter
#if CUDNN_VERSION_MIN(7, 0, 0)
cudnn_wrapper_.with_cudnn_state(cudnn_state_, [&](CuDNNState* state) {
CUDNN_ENFORCE(cudnnConvolutionBackwardData(
state->cudnn_handle(),
cudnnTypeWrapper<T>::kOne(),
filter_desc_,
filter_data,
bottom_desc_,
X_data,
conv_desc_,
bwd_data_algo_,
state->workspace().get(cudnn_ws_nbytes_),
cudnn_ws_nbytes_,
cudnnTypeWrapper<T>::kZero(),
top_desc_,
Y_data));
});
#else
const int X_HxW = H * W;
const int Y_HxW = H_out * W_out;
const int group_offset_X =
order_ == StorageOrder::NCHW ? M / group_ * X_HxW : M / group_;
const int group_offset_Y =
order_ == StorageOrder::NCHW ? C / group_ * Y_HxW : C / group_;
const int group_offset_filter = filter.numel() / group_;
for (int i = 0; i < group_; ++i) {
cudnn_wrapper_.with_cudnn_state(cudnn_state_, [&](CuDNNState* state) {
CUDNN_ENFORCE(
cudnnConvolutionBackwardData(state->cudnn_handle(),
cudnnTypeWrapper<T>::kOne(),
filter_desc_,
filter_data + i * group_offset_filter,
bottom_desc_,
X_data + i * group_offset_X;
conv_desc_,
bwd_data_algo_,
state->workspace().get(cudnn_ws_nbytes_),
cudnn_ws_nbytes_,
cudnnTypeWrapper<T_DX>::kZero(),
top_desc_,
Y_data + i * group_offset_Y));
});
}
#endif
// Bias
if (InputSize() == 3) {
CUDNN_ENFORCE(cudnnAddTensor(
cudnn_wrapper_.inline_cudnn_handle(),
cudnnTypeWrapper<T>::kOne(),
bias_desc_,
Input(BIAS).template data<T>(),
cudnnTypeWrapper<T>::kOne(),
top_desc_for_bias_,
Y->template mutable_data<T>()));
}
// Done.
return true;
}
// TODO(Yangqing): a lot of the function contents are very similar. Consider
// consolidating them.
template <typename T>
bool CudnnConvTransposeGradientOp<T>::RunOnDevice() {
const auto& X = Input(INPUT);
const auto& filter = Input(FILTER);
const auto& dY = Input(OUTPUT_GRAD);
CAFFE_ENFORCE_EQ(X.dim(), 4);
CAFFE_ENFORCE_EQ(filter.dim(), 4);
int C = 0;
switch (order_) {
case StorageOrder::NHWC:
C = filter.dim32(3) * group_;
break;
case StorageOrder::NCHW:
C = filter.dim32(1) * group_;
break;
default:
LOG(FATAL) << "Unknown storage order: " << order_;
}
int N = 0, M = 0, H = 0, W = 0, H_out = 0, W_out = 0;
switch (order_) {
case StorageOrder::NHWC:
N = X.dim32(0);
H = X.dim32(1);
W = X.dim32(2);
M = X.dim32(3);
H_out = dY.dim32(1);
W_out = dY.dim32(2);
CAFFE_ENFORCE_EQ(filter.dim32(1), kernel_h());
CAFFE_ENFORCE_EQ(filter.dim32(1), kernel_h());
CAFFE_ENFORCE_EQ(filter.dim32(2), kernel_w());
CAFFE_ENFORCE_EQ(filter.dim32(3), C / group_);
break;
case StorageOrder::NCHW:
N = X.dim32(0);
M = X.dim32(1);
H = X.dim32(2);
W = X.dim32(3);
H_out = dY.dim32(2);
W_out = dY.dim32(3);
CAFFE_ENFORCE_EQ(filter.dim32(1), C / group_);
CAFFE_ENFORCE_EQ(filter.dim32(2), kernel_h());
CAFFE_ENFORCE_EQ(filter.dim32(3), kernel_w());
break;
default:
LOG(FATAL) << "Unknown storage order: " << order_;
}
CAFFE_ENFORCE_EQ(M % group_, 0);
// Since we only handle LegacyPadding::NOTSET, we don't need to
// compute padding.
auto* dfilter = Output(FILTER_GRAD, filter.sizes(), at::dtype<T>());
// Set up the cudnn algorithms & workspace if necessary
const bool input_changed = (X.sizes() != cudnn_input_dims_);
const bool filter_changed = (filter.sizes() != cudnn_filter_dims_);
if (input_changed || filter_changed) {
VLOG(1) << "Changing the cudnn descriptor configurations.";
if (input_changed) {
cudnn_input_dims_ = X.sizes().vec();
SetTensor4DDescriptorWithGroup(
cudnnTypeWrapper<T>::type, N, M, H, W, &bottom_desc_);
}
if (filter_changed) {
cudnn_filter_dims_ = filter.sizes().vec();
#if CUDNN_VERSION_MIN(7, 0, 0)
const int MM = M;
#else
const int MM = M / group_;
#endif
CUDNN_ENFORCE(cudnnSetFilter4dDescriptor(
filter_desc_,
cudnnTypeWrapper<T>::type,
GetCudnnTensorFormat(order_),
MM,
C / group_,
kernel_h(),
kernel_w()));
if (!no_bias_) {
CUDNN_ENFORCE(cudnnSetTensor4dDescriptor(
bias_desc_,
GetCudnnTensorFormat(order_),
cudnnTypeWrapper<T>::type,
1,
C,
1,
1));
}
}
// Set the output
SetTensor4DDescriptorWithGroup(
cudnnTypeWrapper<T>::type, N, C, H_out, W_out, &top_desc_);
if (!no_bias_) {
CUDNN_ENFORCE(cudnnSetTensor4dDescriptor(
top_desc_for_bias_,
GetCudnnTensorFormat(order_),
cudnnTypeWrapper<T>::type,
N,
C,
H_out,
W_out));
}
// Set the convolution descriptor
CAFFE_ENFORCE_EQ(
pad_t(),
pad_b(),
"The current padding scheme leads to unequal padding on the top and "
"bottom, which is not supported by cudnn.");
CAFFE_ENFORCE_EQ(
pad_l(),
pad_r(),
"The current padding scheme leads to unequal padding on the left "
"and right, which is not supported by cudnn.");
#if CUDNN_VERSION_MIN(6, 0, 0)
CUDNN_ENFORCE(cudnnSetConvolution2dDescriptor(
conv_desc_,
pad_t(),
pad_l(),
stride_h(),
stride_w(),
1,
1,
CUDNN_CROSS_CORRELATION,
cudnnTypeWrapper<T>::type));
#else
CUDNN_ENFORCE(cudnnSetConvolution2dDescriptor(
conv_desc_,
pad_t(),
pad_l(),
stride_h(),
stride_w(),
1,
1,
CUDNN_CROSS_CORRELATION));
#endif
#if CUDNN_VERSION_MIN(7, 0, 0)
// enable TensorCore math if desired
enable_tensor_core_ &= TensorCoreAvailable();
if (enable_tensor_core_) {
CUDNN_ENFORCE(
cudnnSetConvolutionMathType(conv_desc_, CUDNN_TENSOR_OP_MATH));
}
// set cuDNN groups if appropriate
CUDNN_CHECK(cudnnSetConvolutionGroupCount(conv_desc_, group_));
#endif
if (force_algo_[ALGO_WGRAD] >= 0) {
bwd_filter_algo_ =
(cudnnConvolutionBwdFilterAlgo_t)force_algo_[ALGO_WGRAD];
} else if (deterministic_) {
algo_ = CUDNN_CONVOLUTION_FWD_ALGO_IMPLICIT_PRECOMP_GEMM;
bwd_filter_algo_ = CUDNN_CONVOLUTION_BWD_FILTER_ALGO_1;
} else if (exhaustive_search_) {
bwd_filter_algo_ =
filter_algo_cache_.getAlgorithm(X.sizes(), filter.sizes(), 0, [&]() {
LOG(INFO) << "CUDNN Convolution bwd: doing exhaustive search.";
// When we do an exhaustive search, we will ignore the workspace
// size
// limit and simply go for the fastest algorithm. If you happen to
// run
// out of memory later, you will be on your own...
int returned_algo_count;
// We clean up the current workspace memory so that the forward
// algorithm
// is free to allocate memory.
// Actually run the search.
std::array<
cudnnConvolutionBwdFilterAlgoPerf_t,
kNUM_CUDNN_BWD_FILTER_ALGS>
filter_perf_stat;
cudnn_wrapper_.with_cudnn_state(
cudnn_state_, [&](CuDNNState* state) {
state->workspace().reset();
CUDNN_ENFORCE(cudnnFindConvolutionBackwardFilterAlgorithm(
state->cudnn_handle(),
top_desc_,
bottom_desc_,
conv_desc_,
filter_desc_,
kNUM_CUDNN_BWD_FILTER_ALGS,
&returned_algo_count,
filter_perf_stat.data()));
});
LogCuDNNPerfStats(filter_perf_stat, returned_algo_count);
return filter_perf_stat[0].algo;
});
algo_ =
forward_algo_cache_.getAlgorithm(X.sizes(), filter.sizes(), 0, [&]() {
int returned_algo_count;
std::array<cudnnConvolutionFwdAlgoPerf_t, kNUM_CUDNN_FWD_ALGS>
fwd_perf_stat;
cudnn_wrapper_.with_cudnn_state(
cudnn_state_, [&](CuDNNState* state) {
state->workspace().reset();
CUDNN_ENFORCE(cudnnFindConvolutionForwardAlgorithm(
state->cudnn_handle(),
top_desc_,
filter_desc_,
conv_desc_,
bottom_desc_,
kNUM_CUDNN_BWD_DATA_ALGS,
&returned_algo_count,
fwd_perf_stat.data()));
});
LogCuDNNPerfStats(fwd_perf_stat, returned_algo_count);
return fwd_perf_stat[0].algo;
});
} else {
// choose backward algorithm for filter
{
constexpr int nalgo = CUDNN_CONVOLUTION_BWD_FILTER_ALGO_COUNT;
int valid_algos;
cudnnConvolutionBwdFilterAlgoPerf_t algos[nalgo];
CUDNN_ENFORCE(cudnnGetConvolutionBackwardFilterAlgorithm_v7(
cudnn_wrapper_.inline_cudnn_handle(),
top_desc_,
bottom_desc_,
conv_desc_,
filter_desc_,
nalgo,
&valid_algos,
algos));
bool found = false;
for (int i = 0; i < valid_algos; i++) {
auto a = algos[i];
if (a.memory <= cudnn_ws_nbytes_limit_) {
bwd_filter_algo_ = a.algo;
found = true;
break;
}
}
CAFFE_ENFORCE(found, "Unable to find algorithms for cuDNN backward filter");
}
// choose backward algo for data
{
constexpr int nalgo = CUDNN_CONVOLUTION_FWD_ALGO_COUNT;
int valid_algos;
cudnnConvolutionFwdAlgoPerf_t algos[nalgo];
CUDNN_ENFORCE(cudnnGetConvolutionForwardAlgorithm_v7(
cudnn_wrapper_.inline_cudnn_handle(),
top_desc_,
filter_desc_,
conv_desc_,
bottom_desc_,
nalgo,
&valid_algos,
algos));
bool found = false;
for (int i = 0; i < valid_algos; i++) {
auto a = algos[i];
if (a.memory <= cudnn_ws_nbytes_limit_) {
algo_ = a.algo;
found = true;
break;
}
}
CAFFE_ENFORCE(found, "Unable to find algorithms for cuDNN forward");
}
}
// get workspace for backwards filter algorithm
size_t bwd_filter_ws_size, fwd_ws_size;
CUDNN_ENFORCE(cudnnGetConvolutionBackwardFilterWorkspaceSize(
cudnn_wrapper_.inline_cudnn_handle(),
top_desc_,
bottom_desc_,
conv_desc_,
filter_desc_,
bwd_filter_algo_,
&bwd_filter_ws_size));
// get workspace for backwards data algorithm
CUDNN_ENFORCE(cudnnGetConvolutionForwardWorkspaceSize(
cudnn_wrapper_.inline_cudnn_handle(),
top_desc_,
filter_desc_,
conv_desc_,
bottom_desc_,
algo_,
&fwd_ws_size));
cudnn_ws_nbytes_ = std::max(bwd_filter_ws_size, fwd_ws_size);
VLOG(1) << "CuDNN bwd algorithm: " << bwd_filter_algo_ << ", " << algo_;
VLOG(1) << "CuDNN workspace size: " << cudnn_ws_nbytes_;
}
// Now, actually run the computation.
if (!no_bias_) {
auto* dbias = Output(BIAS_OR_INPUT_GRAD, {C}, at::dtype<T>());
CUDNN_ENFORCE(cudnnConvolutionBackwardBias(
cudnn_wrapper_.inline_cudnn_handle(),
cudnnTypeWrapper<T>::kOne(),
top_desc_for_bias_,
dY.template data<T>(),
cudnnTypeWrapper<T>::kZero(),
bias_desc_,
dbias->template mutable_data<T>()));
}
#if CUDNN_VERSION_MIN(7, 0, 0)
cudnn_wrapper_.with_cudnn_state(cudnn_state_, [&](CuDNNState* state) {
CUDNN_ENFORCE(cudnnConvolutionBackwardFilter(
state->cudnn_handle(),
cudnnTypeWrapper<T>::kOne(),
top_desc_,
dY.template data<T>(),
bottom_desc_,
X.template data<T>(),
conv_desc_,
bwd_filter_algo_,
state->workspace().get(cudnn_ws_nbytes_),
cudnn_ws_nbytes_,
cudnnTypeWrapper<T>::kZero(),
filter_desc_,
dfilter->template mutable_data<T>()));
if (OutputSize() == 3 || (no_bias_ && (OutputSize() == 2))) {
// Compute the gradient w.r.t. the input.
auto* dX = Output(
no_bias_ ? BIAS_OR_INPUT_GRAD : INPUT_GRAD,
X.sizes(),
at::dtype<T>());
CUDNN_ENFORCE(cudnnConvolutionForward(
state->cudnn_handle(),
cudnnTypeWrapper<T>::kOne(),
top_desc_,
dY.template data<T>(),
filter_desc_,
filter.template data<T>(),
conv_desc_,
algo_,
state->workspace().get(cudnn_ws_nbytes_),
cudnn_ws_nbytes_,
cudnnTypeWrapper<T>::kZero(),
bottom_desc_,
dX->template mutable_data<T>()));
}
});
#else
const int X_HxW = H * W;
const int Y_HxW = H_out * W_out;
const int group_offset_X =
order_ == StorageOrder::NCHW ? M / group_ * X_HxW : M / group_;
const int group_offset_Y =
order_ == StorageOrder::NCHW ? C / group_ * Y_HxW : C / group_;
const int group_offset_filter = filter.numel() / group_;
for (int i = 0; i < group_; ++i) {
cudnn_wrapper_.with_cudnn_state(cudnn_state_, [&](CuDNNState* state) {
CUDNN_ENFORCE(cudnnConvolutionBackwardFilter(
state->cudnn_handle(),
cudnnTypeWrapper<T>::kOne(),
top_desc_,
dY.template data<T>() + i * group_offset_Y,
bottom_desc_,
X.template data<T>() + i * group_offset_X,
conv_desc_,
bwd_filter_algo_,
state->workspace().get(cudnn_ws_nbytes_),
cudnn_ws_nbytes_,
cudnnTypeWrapper<T>::kZero(),
filter_desc_,
dfilter->template mutable_data<T>() + i * group_offset_filter));
if (OutputSize() == 3 || (no_bias_ && (OutputSize() == 2))) {
// Compute the gradient w.r.t. the input.
auto* dX = Output(
no_bias_ ? BIAS_OR_INPUT_GRAD : INPUT_GRAD,
X.sizes(),
at::dtype<T>());
cudnn_wrapper_.with_cudnn_state(cudnn_state_, [&](CuDNNState* state) {
CUDNN_ENFORCE(cudnnConvolutionForward(
state->cudnn_handle(),
cudnnTypeWrapper<T>::kOne(),
top_desc_,
dY.template data<T>() + i * group_offset_Y,
filter_desc_,
filter.template data<T>() + i * group_offset_filter,
conv_desc_,
algo_,
state->workspace().get(cudnn_ws_nbytes_),
cudnn_ws_nbytes_,
cudnnTypeWrapper<T>::kZero(),
bottom_desc_,
dX->template mutable_data<T>() + i * group_offset_X));
});
}
}
#endif
return true;
}
REGISTER_CUDNN_OPERATOR(ConvTranspose, CudnnConvTransposeOp<float>);
REGISTER_CUDNN_OPERATOR(
ConvTransposeGradient,
CudnnConvTransposeGradientOp<float>);
} // namespace caffe2