forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathconv_transpose_unpool_op_base.h
319 lines (283 loc) · 10.1 KB
/
conv_transpose_unpool_op_base.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
#ifndef CAFFE2_OPERATORS_CONV_TRANSPOSE_UNPOOL_OP_BASE_H_
#define CAFFE2_OPERATORS_CONV_TRANSPOSE_UNPOOL_OP_BASE_H_
#include "caffe2/core/context.h"
#include "caffe2/core/logging.h"
#include "caffe2/core/operator.h"
#include "caffe2/operators/conv_op_shared.h"
#include "caffe2/operators/conv_pool_op_base.h"
#include "caffe2/proto/caffe2_legacy.pb.h"
#include "caffe2/utils/math.h"
C10_DECLARE_bool(caffe2_force_shared_col_buffer);
namespace caffe2 {
template <class Context>
class ConvTransposeUnpoolBase : public Operator<Context> {
public:
USE_OPERATOR_CONTEXT_FUNCTIONS;
explicit ConvTransposeUnpoolBase(
const OperatorDef& operator_def,
Workspace* ws)
: Operator<Context>(operator_def, ws),
legacy_pad_(
static_cast<LegacyPadding>(this->template GetSingleArgument<int>(
"legacy_pad",
LegacyPadding::NOTSET))),
kernel_(this->template GetRepeatedArgument<int>("kernels")),
stride_(this->template GetRepeatedArgument<int>("strides")),
pads_(this->template GetRepeatedArgument<int>("pads")),
adj_(this->template GetRepeatedArgument<int>("adjs")),
group_(this->template GetSingleArgument<int>("group", 1)),
order_(StringToStorageOrder(
this->template GetSingleArgument<string>("order", "NCHW"))),
shared_buffer_(
this->template GetSingleArgument<int>("shared_buffer", 0)),
ws_(ws) {
// For the padding, they should either be the legacy padding strategy
// (VALID or SAME), or an explicit, non-negative value.
if (legacy_pad_ == LegacyPadding::VALID ||
legacy_pad_ == LegacyPadding::SAME) {
CAFFE_ENFORCE(
!OperatorBase::HasArgument("pads"),
"If you use legacy padding VALID or SAME, you should not specify "
"any specific padding values.");
}
// Get old arguments values.
if (OperatorBase::HasArgument("kernel")) {
kernel_.resize(2, this->template GetSingleArgument<int>("kernel", 0));
} else if (
OperatorBase::HasArgument("kernel_h") &&
OperatorBase::HasArgument("kernel_w")) {
kernel_.push_back(this->template GetSingleArgument<int>("kernel_h", 0));
kernel_.push_back(this->template GetSingleArgument<int>("kernel_w", 0));
}
if (OperatorBase::HasArgument("stride")) {
stride_.resize(2, this->template GetSingleArgument<int>("stride", 0));
} else if (
OperatorBase::HasArgument("stride_h") &&
OperatorBase::HasArgument("stride_w")) {
stride_.push_back(this->template GetSingleArgument<int>("stride_h", 0));
stride_.push_back(this->template GetSingleArgument<int>("stride_w", 0));
}
if (OperatorBase::HasArgument("adj")) {
adj_.resize(2, this->template GetSingleArgument<int>("adj", 0));
} else if (
OperatorBase::HasArgument("adj_h") &&
OperatorBase::HasArgument("adj_w")) {
adj_.push_back(this->template GetSingleArgument<int>("adj_h", 0));
adj_.push_back(this->template GetSingleArgument<int>("adj_w", 0));
}
if (OperatorBase::HasArgument("pad")) {
CAFFE_ENFORCE(
legacy_pad_ != LegacyPadding::VALID &&
legacy_pad_ != LegacyPadding::SAME,
"If you use legacy padding VALID or SAME, you should not specify "
"any specific padding values.");
pads_.resize(4, this->template GetSingleArgument<int>("pad", 0));
} else if (
OperatorBase::HasArgument("pad_t") &&
OperatorBase::HasArgument("pad_l") &&
OperatorBase::HasArgument("pad_b") &&
OperatorBase::HasArgument("pad_r")) {
CAFFE_ENFORCE(
legacy_pad_ != LegacyPadding::VALID &&
legacy_pad_ != LegacyPadding::SAME,
"If you use legacy padding VALID or SAME, you should not specify "
"any specific padding values.");
pads_.push_back(this->template GetSingleArgument<int>("pad_t", 0));
pads_.push_back(this->template GetSingleArgument<int>("pad_l", 0));
pads_.push_back(this->template GetSingleArgument<int>("pad_b", 0));
pads_.push_back(this->template GetSingleArgument<int>("pad_r", 0));
}
// Fill default values.
if (kernel_.size() == 0) {
kernel_.assign({0, 0});
}
if (stride_.size() == 0) {
stride_.resize(kernel_.size(), 1);
}
if (pads_.size() == 0) {
pads_.resize(kernel_.size() * 2, 0);
}
if (adj_.size() == 0) {
adj_.resize(kernel_.size(), 0);
}
CAFFE_ENFORCE_EQ(stride_.size(), kernel_.size());
CAFFE_ENFORCE_EQ(adj_.size(), kernel_.size());
if (legacy_pad_ != LegacyPadding::VALID &&
legacy_pad_ != LegacyPadding::SAME) {
CAFFE_ENFORCE_EQ(pads_.size(), 2 * kernel_.size());
}
// NOLINTNEXTLINE(clang-diagnostic-sign-compare)
for (const auto dim : c10::irange(kernel_.size())) {
CAFFE_ENFORCE_GT(kernel_[dim], 0);
CAFFE_ENFORCE_GT(stride_[dim], 0);
CAFFE_ENFORCE_GE(adj_[dim], 0);
CAFFE_ENFORCE_LE(adj_[dim], stride_[dim]);
}
// Create shared buffer mutex in the constructor
// to avoid race-condition in DAGNet.
if (FLAGS_caffe2_force_shared_col_buffer || shared_buffer_) {
createSharedBuffer<Context>(ws_);
}
}
// Gets the output size. The output channel is manually specified.
std::vector<int64_t> GetOutputSize(const Tensor& input, int output_channel) {
CAFFE_ENFORCE(4 == input.dim());
CAFFE_ENFORCE_GT(input.size_from_dim(1), 0);
int N = input.dim32(0);
bool channel_first = false; // initialized to suppress compiler warning.
int H = 0, W = 0; // initialized to suppress compiler warning.
int M = 0;
switch (order_) {
case StorageOrder::NHWC:
channel_first = false;
H = input.dim32(1);
W = input.dim32(2);
M = input.dim32(3);
break;
case StorageOrder::NCHW:
channel_first = true;
M = input.dim32(1);
H = input.dim32(2);
W = input.dim32(3);
break;
default:
LOG(FATAL) << "Unknown Storage order: " << order_;
}
int output_height = 0, output_width = 0;
ComputeSizeAndPad(
H,
stride_[0],
kernel_[0],
adj_[0],
&pads_[0],
&pads_[2],
&output_height);
ComputeSizeAndPad(
W,
stride_[1],
kernel_[1],
adj_[1],
&pads_[1],
&pads_[3],
&output_width);
std::vector<int64_t> sizes;
if (channel_first) {
sizes = {N, output_channel, output_height, output_width};
} else {
sizes = {N, output_height, output_width, output_channel};
}
VLOG(2) << "In: N " << N << " M " << M << " H " << H << " W " << W;
VLOG(2) << "Out: output_channel " << output_channel << " H "
<< output_height << " W " << output_width;
return sizes;
}
bool RunOnDevice() override {
switch (order_) {
case StorageOrder::NHWC:
return RunOnDeviceWithOrderNHWC();
case StorageOrder::NCHW:
return RunOnDeviceWithOrderNCHW();
default:
LOG(FATAL) << "Unknown storage order: " << order_;
}
// To suppress old compiler warnings
return true;
}
virtual bool RunOnDeviceWithOrderNCHW() {
CAFFE_THROW("Not implemented");
}
virtual bool RunOnDeviceWithOrderNHWC() {
CAFFE_THROW("Not implemented");
}
virtual ~ConvTransposeUnpoolBase() {}
protected:
// Accessors for 2D conv params.
inline int pad_t() const {
return pads_[0];
}
inline int pad_l() const {
return pads_[1];
}
inline int pad_b() const {
return pads_[2];
}
inline int pad_r() const {
return pads_[3];
}
inline int kernel_h() const {
return kernel_[0];
}
inline int kernel_w() const {
return kernel_[1];
}
inline int stride_h() const {
return stride_[0];
}
inline int stride_w() const {
return stride_[1];
}
inline int adj_h() const {
return adj_[0];
}
inline int adj_w() const {
return adj_[1];
}
inline void ComputeSizeAndPad(
const int in_size,
const int stride,
const int kernel,
const int adj,
int* pad_head,
int* pad_tail,
int* out_size) {
switch (legacy_pad_) {
case LegacyPadding::NOTSET:
CAFFE_ENFORCE(*pad_head >= 0);
CAFFE_ENFORCE(*pad_tail >= 0);
*out_size =
(in_size - 1) * stride + kernel + adj - *pad_head - *pad_tail;
break;
// We handle cases of LegacyPadding::VALID and LegacyPadding::SAME
// the same way
case LegacyPadding::VALID:
case LegacyPadding::SAME:
*pad_head = 0;
*pad_tail = 0;
*out_size = (in_size - 1) * stride + kernel + adj;
break;
case LegacyPadding::CAFFE_LEGACY_POOLING:
LOG(FATAL) << "CAFFE_LEGACY_POOLING is no longer supported.";
break;
}
}
LegacyPadding legacy_pad_;
int pad_;
std::vector<int> kernel_;
std::vector<int> stride_;
std::vector<int> pads_;
std::vector<int> adj_;
int group_;
StorageOrder order_;
bool shared_buffer_;
Workspace* ws_;
};
#define USE_CONV_TRANSPOSE_UNPOOL_BASE_FUNCTIONS(Context) \
USE_OPERATOR_FUNCTIONS(Context); \
using ConvTransposeUnpoolBase<Context>::kernel_; \
using ConvTransposeUnpoolBase<Context>::kernel_h; \
using ConvTransposeUnpoolBase<Context>::kernel_w; \
using ConvTransposeUnpoolBase<Context>::stride_; \
using ConvTransposeUnpoolBase<Context>::stride_h; \
using ConvTransposeUnpoolBase<Context>::stride_w; \
using ConvTransposeUnpoolBase<Context>::pads_; \
using ConvTransposeUnpoolBase<Context>::pad_t; \
using ConvTransposeUnpoolBase<Context>::pad_l; \
using ConvTransposeUnpoolBase<Context>::pad_b; \
using ConvTransposeUnpoolBase<Context>::pad_r; \
using ConvTransposeUnpoolBase<Context>::adj_; \
using ConvTransposeUnpoolBase<Context>::group_; \
using ConvTransposeUnpoolBase<Context>::order_; \
using ConvTransposeUnpoolBase<Context>::shared_buffer_; \
using ConvTransposeUnpoolBase<Context>::ws_
} // namespace caffe2
#endif // CAFFE2_OPERATORS_CONV_TRANSPOSE_UNPOOL_OP_BASE_H_