forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathcross_entropy_op.cc
711 lines (608 loc) · 23 KB
/
cross_entropy_op.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
#include "caffe2/operators/cross_entropy_op.h"
#include "caffe2/utils/eigen_utils.h"
namespace caffe2 {
namespace {
inline float sigmoid_xent_forward(float lgt, float tgt) {
// NOLINTNEXTLINE(cppcoreguidelines-narrowing-conversions,bugprone-narrowing-conversions)
return lgt * (tgt - (lgt >= 0)) - log(1 + exp(lgt - 2 * lgt * (lgt >= 0)));
}
inline float sigmoid_xent_backward(float lgt, float tgt) {
// NOLINTNEXTLINE(cppcoreguidelines-narrowing-conversions,bugprone-narrowing-conversions)
return tgt - 1. / (1. + exp(-lgt));
}
inline float sigmoid_partition(float lgt) {
// computes log(1 + exp(lgt)) with only exp(x) function when x >= 0
// NOLINTNEXTLINE(cppcoreguidelines-narrowing-conversions,bugprone-narrowing-conversions)
return lgt * (lgt >= 0) + log(1 + exp(lgt - 2 * lgt * (lgt >= 0)));
}
inline float sigmoid_xent_forward_with_log_d_trick(float lgt, float tgt) {
// NOLINTNEXTLINE(cppcoreguidelines-narrowing-conversions,bugprone-narrowing-conversions)
return (2 * tgt - 1.) * (lgt - sigmoid_partition(lgt));
}
inline float sigmoid_xent_backward_with_log_d_trick(float lgt, float tgt) {
// NOLINTNEXTLINE(cppcoreguidelines-narrowing-conversions,bugprone-narrowing-conversions)
return (2 * tgt - 1.) / (1. + exp(lgt));
}
inline float unjoined_sigmoid_xent_forward(float lgt, float tgt) {
// NOLINTNEXTLINE(cppcoreguidelines-narrowing-conversions,bugprone-narrowing-conversions)
return lgt * tgt + (tgt - 1) * lgt * (lgt >= 0) -
// NOLINTNEXTLINE(cppcoreguidelines-narrowing-conversions,bugprone-narrowing-conversions)
(1 - tgt) * log(1 + exp(lgt - 2 * lgt * (lgt >= 0)));
}
inline float unjoined_sigmoid_xent_backward(float lgt, float tgt) {
// NOLINTNEXTLINE(cppcoreguidelines-narrowing-conversions,bugprone-narrowing-conversions)
return tgt - (1. - tgt) / (1. + exp(-lgt));
}
} // namespace
template <>
bool LabelCrossEntropyOp<float, CPUContext>::RunOnDevice() {
auto& X = Input(0);
auto& label = Input(1);
// NOLINTNEXTLINE(cppcoreguidelines-init-variables)
int N, D;
if (X.dim() > 1) {
N = X.dim32(0);
D = X.size_from_dim(1);
} else {
N = 1;
D = X.dim32(0);
}
CAFFE_ENFORCE(
(label.dim() == 1) || (label.dim() == 2 && label.dim32(1) == 1));
CAFFE_ENFORCE_EQ(label.dim32(0), N);
auto* Y = Output(0, {N}, at::dtype<float>());
const auto* Xdata = X.data<float>();
const auto* labelData = label.data<int>();
auto* Ydata = Y->template mutable_data<float>();
CAFFE_ENFORCE(
(ConstEigenVectorArrayMap<int>(labelData, N) < D).all() &&
(ConstEigenVectorArrayMap<int>(labelData, N) >= 0).all(),
"Label seems to be outside of supported range. Supported labels are in "
"range [0,",
D,
")");
for (int i = 0; i < N; ++i) {
Ydata[i] = -log(std::max(Xdata[i * D + labelData[i]], kLOG_THRESHOLD()));
}
return true;
}
template <>
bool SigmoidCrossEntropyWithLogitsOp<float, CPUContext>::RunOnDevice() {
auto& logits = Input(0);
auto& targets = Input(1);
CAFFE_ENFORCE_EQ(logits.sizes(), targets.sizes());
const auto inner_size = logits.dim() > 0 ? logits.sizes().back() : 1;
const auto outer_size = logits.numel() / inner_size;
std::vector<int64_t> dims;
if (logits.dim() != 0) {
dims =
std::vector<int64_t>(logits.sizes().begin(), logits.sizes().end() - 1);
}
auto* out = Output(0, dims, at::dtype<float>());
auto* out_ptr = out->template mutable_data<float>();
auto* logits_ptr = logits.data<float>();
auto* targets_ptr = targets.data<float>();
auto in_idx = 0;
for (int i = 0; i < outer_size; ++i) {
float value = 0;
for (int j = 0; j < inner_size; ++j) {
if (unjoined_lr_loss_) {
value += unjoined_sigmoid_xent_forward(
logits_ptr[in_idx], targets_ptr[in_idx]);
} else {
value +=
(log_D_trick_ ? sigmoid_xent_forward_with_log_d_trick(
logits_ptr[in_idx], targets_ptr[in_idx])
: sigmoid_xent_forward(
logits_ptr[in_idx], targets_ptr[in_idx]));
}
++in_idx;
}
out_ptr[i] = -value / inner_size;
}
return true;
}
template <>
bool SigmoidCrossEntropyWithLogitsGradientOp<float, CPUContext>::RunOnDevice() {
auto& g = Input(0);
auto& logits = Input(1);
auto& targets = Input(2);
CAFFE_ENFORCE(logits.sizes() == targets.sizes());
const auto inner_size = logits.dim() > 0 ? logits.sizes().back() : 1;
const auto outer_size = logits.numel() / inner_size;
CAFFE_ENFORCE(g.numel() == outer_size);
auto* out = Output(0, logits.sizes(), at::dtype<float>());
auto* out_ptr = out->template mutable_data<float>();
auto* logits_ptr = logits.data<float>();
auto* targets_ptr = targets.data<float>();
auto* g_ptr = g.data<float>();
auto in_idx = 0;
for (int i = 0; i < outer_size; ++i) {
auto g_factor = -g_ptr[i] / inner_size;
for (int j = 0; j < inner_size; ++j) {
if (unjoined_lr_loss_) {
out_ptr[in_idx] = g_factor *
unjoined_sigmoid_xent_backward(
logits_ptr[in_idx], targets_ptr[in_idx]);
} else {
out_ptr[in_idx] = g_factor *
(log_D_trick_ ? sigmoid_xent_backward_with_log_d_trick(
logits_ptr[in_idx], targets_ptr[in_idx])
: sigmoid_xent_backward(
logits_ptr[in_idx], targets_ptr[in_idx]));
}
++in_idx;
}
}
return true;
}
template <>
bool WeightedSigmoidCrossEntropyWithLogitsOp<float, CPUContext>::RunOnDevice() {
auto& logits = Input(0);
auto& targets = Input(1);
auto& weights = Input(2);
CAFFE_ENFORCE(logits.sizes() == targets.sizes());
CAFFE_ENFORCE(weights.sizes() == targets.sizes());
const auto inner_size = logits.dim() > 0 ? logits.sizes().back() : 1;
const auto outer_size = logits.numel() / inner_size;
std::vector<int64_t> dims;
if (logits.dim() != 0) {
dims =
std::vector<int64_t>(logits.sizes().begin(), logits.sizes().end() - 1);
}
auto* out = Output(0, dims, at::dtype<float>());
auto* out_ptr = out->template mutable_data<float>();
auto* logits_ptr = logits.data<float>();
auto* targets_ptr = targets.data<float>();
auto* weights_ptr = weights.data<float>();
auto in_idx = 0;
for (int i = 0; i < outer_size; ++i) {
float value = 0;
for (int j = 0; j < inner_size; ++j) {
value += sigmoid_xent_forward(logits_ptr[in_idx], targets_ptr[in_idx]) *
weights_ptr[in_idx];
++in_idx;
}
out_ptr[i] = -value / inner_size;
}
return true;
}
template <>
bool WeightedSigmoidCrossEntropyWithLogitsGradientOp<float, CPUContext>::
RunOnDevice() {
auto& g = Input(0);
auto& logits = Input(1);
auto& targets = Input(2);
auto& weights = Input(3);
CAFFE_ENFORCE(logits.sizes() == targets.sizes());
CAFFE_ENFORCE(weights.sizes() == targets.sizes());
const auto inner_size = logits.dim() > 0 ? logits.sizes().back() : 1;
const auto outer_size = logits.numel() / inner_size;
CAFFE_ENFORCE(g.numel() == outer_size);
auto* out = Output(0, logits.sizes(), at::dtype<float>());
auto* out_ptr = out->template mutable_data<float>();
auto* logits_ptr = logits.data<float>();
auto* targets_ptr = targets.data<float>();
auto* weights_ptr = weights.data<float>();
auto* g_ptr = g.data<float>();
auto in_idx = 0;
for (int i = 0; i < outer_size; ++i) {
auto g_factor = -g_ptr[i] / inner_size;
for (int j = 0; j < inner_size; ++j) {
out_ptr[in_idx] = g_factor *
sigmoid_xent_backward(logits_ptr[in_idx], targets_ptr[in_idx]) *
weights_ptr[in_idx];
++in_idx;
}
}
return true;
}
template <>
bool LabelCrossEntropyGradientOp<float, CPUContext>::RunOnDevice() {
auto& X = Input(0);
auto& label = Input(1);
auto& dY = Input(2);
// NOLINTNEXTLINE(cppcoreguidelines-init-variables)
int N, D;
if (X.dim() > 1) {
N = X.dim32(0);
D = X.size_from_dim(1);
} else {
N = 1;
D = X.dim32(0);
}
CAFFE_ENFORCE(
(label.dim() == 1) || (label.dim() == 2 && label.dim32(1) == 1));
CAFFE_ENFORCE_EQ(label.dim32(0), N);
CAFFE_ENFORCE_EQ(dY.dim(), 1);
CAFFE_ENFORCE_EQ(dY.dim32(0), N);
auto* dX = Output(0, X.sizes(), at::dtype<float>());
math::Set<float, CPUContext>(
dX->numel(), 0.f, dX->template mutable_data<float>(), &context_);
const float* Xdata = X.data<float>();
const float* dYdata = dY.data<float>();
const int* labelData = label.data<int>();
float* dXdata = dX->template mutable_data<float>();
for (int i = 0; i < N; ++i) {
dXdata[i * D + labelData[i]] =
-dYdata[i] / std::max(Xdata[i * D + labelData[i]], kLOG_THRESHOLD());
}
return true;
}
template <>
bool MakeTwoClassOp<float, CPUContext>::RunOnDevice() {
auto& X = Input(0);
auto shape = X.sizes().vec();
shape.push_back(2);
int64_t N = X.numel();
auto* Y = Output(0, shape, at::dtype<float>());
const auto* Xdata = X.data<float>();
auto* Ydata = Y->template mutable_data<float>();
for (int64_t i = 0; i < N; ++i) {
TORCH_DCHECK_GE(Xdata[i], 0.0);
TORCH_DCHECK_LE(Xdata[i], 1.0);
Ydata[i * 2] = 1.0 - Xdata[i];
Ydata[i * 2 + 1] = Xdata[i];
}
return true;
}
template <>
bool MakeTwoClassGradientOp<float, CPUContext>::RunOnDevice() {
auto& dY = Input(0);
auto shape = dY.sizes().vec();
CAFFE_ENFORCE_GE(shape.size(), 1);
CAFFE_ENFORCE_EQ(shape.back(), 2);
shape.pop_back();
auto* dX = Output(0, shape, at::dtype<float>());
const float* dYdata = dY.data<float>();
float* dXdata = dX->template mutable_data<float>();
int64_t N = dX->numel();
// use eigen?
for (int64_t i = 0; i < N; ++i) {
dXdata[i] = dYdata[i * 2 + 1] - dYdata[i * 2];
}
return true;
}
template <>
bool CrossEntropyOp<float, CPUContext>::RunOnDevice() {
auto& X = Input(0);
auto& label = Input(1);
// NOLINTNEXTLINE(cppcoreguidelines-init-variables)
int N, D;
if (X.dim() > 1) {
N = X.dim32(0);
D = X.size_from_dim(1);
} else {
N = 1;
D = X.dim32(0);
}
CAFFE_ENFORCE(
(label.dim() == 1) || (label.dim() == 2 && label.dim32(1) == D));
CAFFE_ENFORCE_EQ(label.dim32(0), N);
auto* Y = Output(0, vector<int64_t>{N}, at::dtype<float>());
const float* Xdata = X.data<float>();
const float* labelData = label.data<float>();
auto* Ydata = Y->template mutable_data<float>();
CAFFE_ENFORCE(
(ConstEigenArrayMap<float>(labelData, D, N) <= 1.0f).all() &&
(ConstEigenArrayMap<float>(labelData, D, N) >= 0.0f).all(),
"Soft label seems incorrect: label value should be a probability ",
"between 0 and 1.0. You may be using the wrong cross entropy operator; ",
"use LabelCrossEntropy if the labels are integers whose values are at ",
"most the number of classes, ",
D,
".");
EigenArrayMap<float>(Ydata, 1, N) =
-(ConstEigenArrayMap<float>(labelData, D, N) *
ConstEigenArrayMap<float>(Xdata, D, N).cwiseMax(kLOG_THRESHOLD()).log())
.colwise()
.sum();
return true;
}
template <>
bool CrossEntropyGradientOp<float, CPUContext>::RunOnDevice() {
auto& X = Input(0);
auto& label = Input(1);
auto& dY = Input(2);
// NOLINTNEXTLINE(cppcoreguidelines-init-variables)
int N, D;
if (X.dim() > 1) {
N = X.dim32(0);
D = X.size_from_dim(1);
} else {
N = 1;
D = X.dim32(0);
}
CAFFE_ENFORCE(
(label.dim() == 1) || (label.dim() == 2 && label.dim32(1) == D));
CAFFE_ENFORCE_EQ(label.dim32(0), N);
CAFFE_ENFORCE_EQ(dY.dim(), 1);
CAFFE_ENFORCE_EQ(dY.dim32(0), N);
auto* dX = Output(0, X.sizes(), at::dtype<float>());
math::Set<float, CPUContext>(
dX->numel(), 0.f, dX->template mutable_data<float>(), &context_);
const float* Xdata = X.data<float>();
const float* dYdata = dY.data<float>();
const float* labelData = label.data<float>();
float* dXdata = dX->template mutable_data<float>();
EigenArrayMap<float>(dXdata, D, N) =
(ConstEigenArrayMap<float>(labelData, D, N) /
ConstEigenArrayMap<float>(Xdata, D, N).cwiseMax(kLOG_THRESHOLD()))
.rowwise() *
(-ConstEigenVectorArrayMap<float>(dYdata, N).transpose());
return true;
}
REGISTER_CPU_OPERATOR(
LabelCrossEntropy,
LabelCrossEntropyOp<float, CPUContext>);
REGISTER_CPU_OPERATOR(
LabelCrossEntropyGradient,
LabelCrossEntropyGradientOp<float, CPUContext>);
OPERATOR_SCHEMA(LabelCrossEntropy)
.NumInputs(2)
.NumOutputs(1)
.IdenticalTypeAndShapeOfInputDim(0, 0)
.SetDoc(R"DOC(
This operator computes the cross entropy between a $NxD$ dimensional input data tensor $X$ and a one dimensional input label tensor $label$. The op produces a single length $N$ output tensor $Y$. Here, $N$ is considered the batch size and $D$ is the size of each element in the batch. In practice, it is most commonly used at the end of models as a part of the loss computation, after the SoftMax operator and before the AveragedLoss operator. The cross entropy operation is defined as follows
$$Y_i = -log(X_{ij})$$
where ($i$, $j$) is the classifier's prediction of the $j$th class (the correct one), and $i$ is the batch size. Each log has a lower limit for numerical stability.
The difference between *LabelCrossEntropy* and *CrossEntropy* is how the labels are specified. Here, the labels are a length $N$ list of integers, whereas in CrossEntropy the labels are a $NxD$ dimensional matrix of one hot label vectors. However, the results of computation should be the same, as shown in the two examples where ($i$, $j$) is the classifier's prediction of the $j$th class (the correct one), and $i$ is the batch size. Each log has a lower limit for numerical stability.
Github Links:
- https://github.com/caffe2/caffe2/blob/master/caffe2/operators/cross_entropy_op.h
- https://github.com/caffe2/caffe2/blob/master/caffe2/operators/cross_entropy_op.cc
<details>
<summary> <b>Example</b> </summary>
**Code**
```
workspace.ResetWorkspace()
op = core.CreateOperator(
"LabelCrossEntropy",
["X", "label"],
["Y"]
)
// Create X: Sample softmax output for 5-class model
X = np.array([[.01, .05, .02, .02, .9],[.03, .1, .42, .05, .4]])
print("X:\n",X)
// Create label: Sample 1-hot ground truth label vectors
label = np.array([4,2])
print("label:\n",label)
// Feed X & label into workspace
workspace.FeedBlob("X", X.astype(np.float32))
workspace.FeedBlob("label", label.astype(np.int32))
// Run op
workspace.RunOperatorOnce(op)
// Collect Output
print("Y:\n", workspace.FetchBlob("Y"))
```
**Result**
```
X:
[[0.01 0.05 0.02 0.02 0.9 ]
[0.03 0.1 0.42 0.05 0.4 ]]
label:
[4 2]
Y:
[0.10536055 0.8675006 ]
```
</details>
)DOC")
.Input(
0,
"X",
"Input tensor which is almost always the result of a softmax operation. $X$ is a 2D array of size $NxD$, where $N$ is the batch size and $D$ is the number of classes.")
.Input(
1,
"label",
"Blob containing the labels used to compare the input. $label$ is a length $N$ list of integers, where each element is the integer label for the $n$th element of the batch.")
.Output(
0,
"Y",
"Output blob from the cross entropy computation. $Y$ is 1D length $N$ tensor.");
OPERATOR_SCHEMA(LabelCrossEntropyGradient).NumInputs(3).NumOutputs(1);
class GetLabelCrossEntropyGradient : public GradientMakerBase {
using GradientMakerBase::GradientMakerBase;
vector<OperatorDef> GetGradientDefs() override {
return SingleGradientDef(
"LabelCrossEntropyGradient",
"",
vector<string>{I(0), I(1), GO(0)},
vector<string>{GI(0)});
}
};
REGISTER_GRADIENT(LabelCrossEntropy, GetLabelCrossEntropyGradient);
REGISTER_CPU_OPERATOR(MakeTwoClass, MakeTwoClassOp<float, CPUContext>);
REGISTER_CPU_OPERATOR(
MakeTwoClassGradient,
MakeTwoClassGradientOp<float, CPUContext>);
REGISTER_CPU_OPERATOR(
SigmoidCrossEntropyWithLogits,
SigmoidCrossEntropyWithLogitsOp<float, CPUContext>);
REGISTER_CPU_OPERATOR(
SigmoidCrossEntropyWithLogitsGradient,
SigmoidCrossEntropyWithLogitsGradientOp<float, CPUContext>);
REGISTER_CPU_OPERATOR(
WeightedSigmoidCrossEntropyWithLogits,
WeightedSigmoidCrossEntropyWithLogitsOp<float, CPUContext>);
REGISTER_CPU_OPERATOR(
WeightedSigmoidCrossEntropyWithLogitsGradient,
WeightedSigmoidCrossEntropyWithLogitsGradientOp<float, CPUContext>);
OPERATOR_SCHEMA(MakeTwoClass)
.NumInputs(1)
.NumOutputs(1)
.TensorInferenceFunction([](const OperatorDef& /* unused */,
const vector<TensorShape>& in) {
vector<TensorShape> out(1);
out[0].add_dims(in[0].dims(0));
out[0].add_dims(2);
return out;
})
.SetDoc(R"DOC(
Given a vector of probabilities, this operator transforms this into a 2-column
matrix with complimentary probabilities for binary classification. In explicit
terms, given the vector X, the output Y is vstack(1 - X, X).
)DOC")
.Input(0, "X", "Input vector of probabilities")
.Output(
0,
"Y",
"2-column matrix with complimentary probabilities of X for "
"binary classification");
OPERATOR_SCHEMA(MakeTwoClassGradient).NumInputs(1).NumOutputs(1);
OPERATOR_SCHEMA(SigmoidCrossEntropyWithLogits)
.Arg("log_D_trick", R"DOC(
default is false; if enabled, will use the log d trick to avoid the vanishing
gradients early on; see Goodfellow et. al (2014)
)DOC")
.Arg("unjoined_lr_loss", R"DOC(
default is false; if enabled, the model will be allowed to train on an unjoined
dataset, where some examples might be false negative and might appear
in the dataset later as (true) positive example.
)DOC")
.NumInputs(2)
.NumOutputs(1)
.IdenticalTypeAndShapeOfInputDim(0, 0)
.SetDoc(R"DOC(
Given two matrices logits and targets, of same shape,
(batch_size, num_classes), computes the sigmoid cross entropy between the two.
Returns a tensor of shape (batch_size,) of losses for each example.
)DOC")
.Input(0, "logits", "matrix of logits for each example and class.")
.Input(1, "targets", "matrix of targets, same shape as logits.")
.Output(0, "xentropy", "Vector with the total xentropy for each example.");
OPERATOR_SCHEMA(SigmoidCrossEntropyWithLogitsGradient)
.NumInputs(3)
.NumOutputs(1);
OPERATOR_SCHEMA(WeightedSigmoidCrossEntropyWithLogits)
.NumInputs(3)
.NumOutputs(1)
.IdenticalTypeAndShapeOfInputDim(0, 0)
.SetDoc(R"DOC(
Given three matrices: logits, targets, weights, all of the same shape,
(batch_size, num_classes), computes the weighted sigmoid cross entropy between
logits and targets. Specifically, at each position r,c, this computes
weights[r, c] * crossentropy(sigmoid(logits[r, c]), targets[r, c]), and then
averages over each row.
Returns a tensor of shape (batch_size,) of losses for each example.
)DOC")
.Input(0, "logits", "matrix of logits for each example and class.")
.Input(1, "targets", "matrix of targets, same shape as logits.")
.Input(2, "weights", "matrix of weights, same shape as logits.")
.Output(0, "xentropy", "Vector with the total xentropy for each example.");
OPERATOR_SCHEMA(WeightedSigmoidCrossEntropyWithLogitsGradient)
.NumInputs(4)
.NumOutputs(1);
struct GetMakeTwoClassGradient : public GradientMakerBase {
using GradientMakerBase::GradientMakerBase;
vector<OperatorDef> GetGradientDefs() override {
return SingleGradientDef(
"MakeTwoClassGradient",
"",
vector<string>{GO(0)},
vector<string>{GI(0)});
}
};
REGISTER_GRADIENT(MakeTwoClass, GetMakeTwoClassGradient);
struct GetSigmoidCrossEntropyWithLogitsGradient : public GradientMakerBase {
using GradientMakerBase::GradientMakerBase;
vector<OperatorDef> GetGradientDefs() override {
return SingleGradientDef(
"SigmoidCrossEntropyWithLogitsGradient",
"",
vector<string>{GO(0), I(0), I(1)},
vector<string>{GI(0)});
}
};
REGISTER_GRADIENT(
SigmoidCrossEntropyWithLogits,
GetSigmoidCrossEntropyWithLogitsGradient);
struct GetWeightedSigmoidCrossEntropyWithLogitsGradient
: public GradientMakerBase {
using GradientMakerBase::GradientMakerBase;
vector<OperatorDef> GetGradientDefs() override {
return SingleGradientDef(
"WeightedSigmoidCrossEntropyWithLogitsGradient",
"",
vector<string>{GO(0), I(0), I(1), I(2)},
vector<string>{GI(0)});
}
};
REGISTER_GRADIENT(
WeightedSigmoidCrossEntropyWithLogits,
GetWeightedSigmoidCrossEntropyWithLogitsGradient);
REGISTER_CPU_OPERATOR(CrossEntropy, CrossEntropyOp<float, CPUContext>);
REGISTER_CPU_OPERATOR(
CrossEntropyGradient,
CrossEntropyGradientOp<float, CPUContext>);
OPERATOR_SCHEMA(CrossEntropy)
.NumInputs(2)
.NumOutputs(1)
.IdenticalTypeAndShapeOfInputDim(0, 0)
.SetDoc(R"DOC(
This operator computes the cross entropy between a $NxD$ dimensional input data tensor $X$ and a $NxD$ dimensional input label tensor $label$. The op produces a single length $N$ output tensor $Y$. Here, $N$ is considered the batch size and $D$ is the size of each element in the batch. In practice, it is most commonly used at the end of models as a part of the loss computation, after the SoftMax operator and before the AveragedLoss operator. The cross entropy operation is defined as follows
$$Y_i = \sum_j (label_{ij} * log(X_{ij}))$$
where ($i$, $j$) is the classifier's prediction of the $j$th class (the correct one), and $i$ is the batch size. Each log has a lower limit for numerical stability.
Github Links:
- https://github.com/caffe2/caffe2/blob/master/caffe2/operators/cross_entropy_op.h
- https://github.com/caffe2/caffe2/blob/master/caffe2/operators/cross_entropy_op.cc
<details>
<summary> <b>Example</b> </summary>
**Code**
```
workspace.ResetWorkspace()
op = core.CreateOperator(
"CrossEntropy",
["X", "label"],
["Y"]
)
// Create X: Sample softmax output for 5-class model
X = np.array([[.01, .05, .02, .02, .9],[.03, .1, .42, .05, .4]])
print("X:\n",X)
// Create label: Sample 1-hot ground truth label vectors
label = np.array([[0.,0.,0.,0.,1.],[0.,0.,1.,0.,0.]])
print("label:\n",label)
// Feed X & label into workspace
workspace.FeedBlob("X", X.astype(np.float32))
workspace.FeedBlob("label", label.astype(np.float32))
// Run op
workspace.RunOperatorOnce(op)
// Collect Output
print("Y:\n", workspace.FetchBlob("Y"))
```
**Result**
```
X:
[[0.01 0.05 0.02 0.02 0.9 ]
[0.03 0.1 0.42 0.05 0.4 ]]
label:
[[0. 0. 0. 0. 1.]
[0. 0. 1. 0. 0.]]
Y:
[0.10536055 0.8675006 ]
```
</details>
)DOC")
.Input(
0,
"X",
"Input tensor which is almost always the result of a softmax operation. $X$ is a 2D array of size $NxD$, where $N$ is the batch size and $D$ is the number of classes.")
.Input(
1,
"label",
"Blob containing the labels used to compare the input. $label$ is the same shape as $X$.")
.Output(
0,
"Y",
"Output blob from the cross entropy computation. $Y$ is 1D length $N$ tensor.");
OPERATOR_SCHEMA(CrossEntropyGradient).NumInputs(3).NumOutputs(1);
class GetCrossEntropyGradient : public GradientMakerBase {
using GradientMakerBase::GradientMakerBase;
vector<OperatorDef> GetGradientDefs() override {
return SingleGradientDef(
"CrossEntropyGradient",
"",
vector<string>{I(0), I(1), GO(0)},
vector<string>{GI(0)});
}
};
REGISTER_GRADIENT(CrossEntropy, GetCrossEntropyGradient);
} // namespace caffe2