forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathctc_beam_search_decoder_op.cc
191 lines (170 loc) · 6.64 KB
/
ctc_beam_search_decoder_op.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
#include "caffe2/operators/ctc_beam_search_decoder_op.h"
namespace caffe2 {
namespace {
const float* getTensorDataPtr(const Tensor& tensor, int t, int n) {
const auto dims = tensor.sizes();
CAFFE_ENFORCE_EQ(dims.size(), 3);
// NOLINTNEXTLINE(cppcoreguidelines-narrowing-conversions,bugprone-narrowing-conversions)
int offset = (t * dims[1] + n) * dims[2];
CAFFE_ENFORCE_LT(offset, tensor.numel());
return tensor.template data<float>() + offset;
}
} // namespace
template <>
bool CTCBeamSearchDecoderOp<CPUContext>::RunOnDevice() {
// shape: max_activation_length x batch_size x alphabet_size
auto& inputs = Input(INPUTS);
// shape: batch_size
// shape: sum over all decoded_length
const auto inputs_dims = inputs.sizes();
int32_t max_activation_length = inputs_dims[0];
int32_t batch_size = inputs_dims[1];
int32_t alphabet_size = inputs_dims[2];
// [batch_size]
const int* seq_len_data =
(InputSize() == 2) ? Input(SEQ_LEN).data<int>() : nullptr;
vector<int32_t> values_cache;
const int total_candidates = batch_size * num_candidates_;
auto* output_len =
Output(OUTPUT_LEN, vector<int64_t>{total_candidates}, at::dtype<int>());
int* output_len_data = output_len->mutable_data<int>();
memset(output_len_data, 0, total_candidates * sizeof(int));
auto* output_prob = Output(
OUTPUT_PROB, vector<int64_t>{total_candidates}, at::dtype<float>());
float* output_prob_data = output_prob->mutable_data<float>();
memset(output_prob_data, 0, total_candidates * sizeof(float));
for (int32_t i = 0; i < batch_size; ++i) {
const int32_t activation_length =
(seq_len_data) ? seq_len_data[i] : max_activation_length;
// NOLINTNEXTLINE(modernize-use-transparent-functors)
std::multimap<float, vector<int32_t>, std::greater<float>> A_next_inv;
// For a given time step, Pb maps prefixes to the probability of all
// candidate sequences that end in a blank and Pnb maps prefixes to the
// probability of all candidate sequences that don't end in a blank.
vector<std::map<vector<int32_t>, float>> Pb(
activation_length + 1, std::map<vector<int32_t>, float>());
vector<std::map<vector<int32_t>, float>> Pnb(
activation_length + 1, std::map<vector<int32_t>, float>());
set<vector<int32_t>> A_prev;
Pb[0][vector<int32_t>()] = 1;
Pnb[0][vector<int32_t>()] = 0;
A_prev.insert(vector<int32_t>());
for (int t = 0; t < activation_length; t++) {
const float* ctc = getTensorDataPtr(inputs, t, i);
vector<int32_t> pruned_alpha;
for (int32_t c = 0; c < alphabet_size; c++) {
if (ctc[c] > prune_threshold_) {
pruned_alpha.push_back(c);
}
}
// If the pruned alphabet is empty, don't use pruning.
if (pruned_alpha.size() == 0) {
pruned_alpha = vector<int32_t>(alphabet_size);
std::iota(pruned_alpha.begin(), pruned_alpha.end(), 0);
}
for (auto const& l : A_prev) {
// We skip the code handling the end character from the article since
// our system does not support an end character.
for (auto const c : pruned_alpha) {
// Assumption: blank character always mapped to index 0
if (c == 0) {
Pb[t + 1][l] += ctc[c] * (Pb[t][l] + Pnb[t][l]);
} else {
vector<int32_t> l_plus = vector<int32_t>(l);
l_plus.push_back(c);
if (l.size() > 0 && c == l.back()) {
Pnb[t + 1][l_plus] += ctc[c] * Pb[t][l];
Pnb[t + 1][l] += ctc[c] * Pnb[t][l];
} else {
Pnb[t + 1][l_plus] += ctc[c] * (Pb[t][l] + Pnb[t][l]);
}
if (A_prev.find(l_plus) == A_prev.end()) {
Pb[t + 1][l_plus] += ctc[0] * (Pb[t][l_plus] + Pnb[t][l_plus]);
Pnb[t + 1][l_plus] += ctc[c] * Pnb[t][l_plus];
}
}
}
}
std::map<vector<int32_t>, float> A_next(Pb[t + 1]);
for (const auto& it : Pnb[t + 1]) {
A_next[it.first] += it.second;
}
A_next_inv.clear();
for (const auto& it : A_next) {
A_next_inv.insert({it.second, it.first});
}
A_prev.clear();
auto it = A_next_inv.begin();
for (int j = 0; j < beam_width_; j++) {
if (it == A_next_inv.end()) {
break;
}
A_prev.insert(it->second);
it++;
}
}
auto it = A_next_inv.begin();
for (int index = 0; index < num_candidates_; index++, it++) {
if (it == A_next_inv.end()) {
break;
}
auto& candidate = it->second;
output_len_data[i * num_candidates_ + index] = candidate.size();
output_prob_data[i * num_candidates_ + index] =
Pb.back()[candidate] + Pnb.back()[candidate];
values_cache.insert(
values_cache.end(), candidate.begin(), candidate.end());
}
}
int32_t values_cache_size = values_cache.size();
auto* values =
Output(VALUES, vector<int64_t>{values_cache_size}, at::dtype<int>());
int* values_data = values->mutable_data<int>();
// NOLINTNEXTLINE(clang-diagnostic-sign-compare)
for (int i = 0; i < values_cache.size(); ++i) {
values_data[i] = values_cache.at(i);
}
values_cache.clear();
return true;
}
REGISTER_CPU_OPERATOR(CTCBeamSearchDecoder, CTCBeamSearchDecoderOp<CPUContext>);
OPERATOR_SCHEMA(CTCBeamSearchDecoder)
.NumInputs(1, 2)
.NumOutputs(2, 3)
.SetDoc(
"Prefix beam search decoder for connectionist temporal classification.")
.Arg(
"beam_width",
"Maximum number of candidates to carry over to next activation step.")
.Arg(
"prune_threshold",
"Probability threshold below which outputs are ignored.")
.Input(
0,
"INPUTS",
"3D float Tensor sized [max_activation_length, batch_size, alphabet_size] "
"of network logits (before softmax application).")
.Input(
1,
"SEQ_LEN",
"(optional) 1D int vector containing sequence lengths, "
"having size [batch_size] "
"seq_len will be set to max_time if not provided.")
.Output(
0,
"OUTPUT_LEN",
"Output_len matrix size (batch_size * num_candidates). "
"Each index stores lengths of candidates for its corresponding batch item.")
.Output(
1,
"VALUES",
"Values vector, size (total_decoded_outputs). "
"The flattened vector of final output sequences, in batch order.")
.Output(
2,
"OUTPUT_PROB",
"Probability vector, size (total_decoded_outputs). "
"Each index stores final output probability of its corresponding batch item.")
.InheritOnnxSchema();
SHOULD_NOT_DO_GRADIENT(CTCBeamSearchDecoder);
} // namespace caffe2