forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathelementwise_add_op.h
78 lines (71 loc) · 1.78 KB
/
elementwise_add_op.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
#ifndef CAFFE2_OPERATORS_ELEMENTWISE_ADD_OP_H_
#define CAFFE2_OPERATORS_ELEMENTWISE_ADD_OP_H_
#include <algorithm>
#include <functional>
#include <vector>
#include "caffe2/operators/elementwise_ops.h"
#include "caffe2/operators/elementwise_ops_utils.h"
#include "caffe2/utils/math.h"
namespace caffe2 {
template <class Context>
struct AddFunctor {
template <typename TIn, typename TOut>
bool Forward(
const std::vector<int>& A_dims,
const std::vector<int>& B_dims,
const TIn* A,
const TIn* B,
TOut* C,
Context* context) const {
math::Add(
A_dims.size(),
A_dims.data(),
B_dims.size(),
B_dims.data(),
A,
B,
C,
context);
return true;
}
template <typename TGrad, typename TIn, typename TOut>
bool Backward(
const std::vector<int>& A_dims,
const std::vector<int>& B_dims,
const TGrad* dC,
const TIn* /* A */,
const TIn* /* B */,
const TOut* /* C */,
TGrad* dA,
TGrad* dB,
Context* context) const {
const std::vector<int> C_dims =
elementwise_ops_utils::ComputeBinaryBroadcastForwardDims(
A_dims, B_dims);
std::vector<int> A_back_dims;
std::vector<int> B_back_dims;
elementwise_ops_utils::ComputeBinaryBroadcastBackwardDims(
A_dims, B_dims, &A_back_dims, &B_back_dims);
math::ReduceSum(
C_dims.size(),
C_dims.data(),
A_back_dims.data(),
TGrad(1),
dC,
dA,
context,
true);
math::ReduceSum(
C_dims.size(),
C_dims.data(),
B_back_dims.data(),
TGrad(1),
dC,
dB,
context,
true);
return true;
}
};
} // namespace caffe2
#endif // CAFFE2_OPERATORS_ELEMENTWISE_ADD_OP_H_