forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathfiller_op.h
584 lines (531 loc) · 18 KB
/
filler_op.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
#ifndef CAFFE2_OPERATORS_FILLER_OP_H_
#define CAFFE2_OPERATORS_FILLER_OP_H_
#include <c10/util/irange.h>
#include "caffe2/core/context.h"
#include "caffe2/core/logging.h"
#include "caffe2/core/operator.h"
#include "caffe2/utils/math.h"
namespace caffe2 {
// FillerOp takes in either zero or one input.
//
// If the number of input is 1, the shape will be identical to that of the input
// at run time with optional additional dimensions appended at the end as
// specified by "extra_shape" argument. In that case the "shape" parameter
// should not be set.
//
// If the number of inputs is 0, the full shape must be provided via "shape"
// argument
template <class Context>
class FillerOp : public Operator<Context> {
public:
template <class... Args>
explicit FillerOp(Args&&... args)
: Operator<Context>(std::forward<Args>(args)...),
shape_(this->template GetRepeatedArgument<int64_t>("shape")),
extra_shape_(ToVectorint64_t(
this->template GetRepeatedArgument<int>("extra_shape"))),
input_as_shape_(
this->template GetSingleArgument<bool>("input_as_shape", false)) {
if (InputSize()) {
if (shape_.size() != 0) {
CAFFE_THROW(
"Cannot set the shape argument and pass in an input at "
"the same time");
}
} else {
if (!extra_shape_.empty()) {
CAFFE_THROW("Cannot set extra_shape when there is no input");
}
if (input_as_shape_) {
CAFFE_THROW("An input must be given if input_as_shape is true");
}
if (shape_.size() == 0 &&
this->template HasSingleArgumentOfType<int>("shape")) {
CAFFE_THROW("Fill 'shape' argument was a scalar, list expected");
}
}
}
virtual ~FillerOp() {}
USE_OPERATOR_CONTEXT_FUNCTIONS;
bool RunOnDevice() override {
auto* output = Operator<Context>::Output(0);
if (InputSize()) {
auto shape = vector<int64_t>{};
if (input_as_shape_) {
if (this->InputIsTensorType(0, CPU)) {
// originally, shape input must be in CPU context
auto& input = this->template Input<Tensor>(0, CPU);
CAFFE_ENFORCE_EQ(
input.dim(),
1,
"When input_as_shape is true, the input must be a 1D tensor of "
"data type int64_t");
CAFFE_ENFORCE(input.numel() > 0);
auto* shape_data = input.template data<int64_t>();
shape.insert(shape.end(), shape_data, shape_data + input.dim32(0));
} else {
// in ONNX case, we allow shape to be in CUDA context
auto& input = Input(0);
CAFFE_ENFORCE_EQ(
input.dim(),
1,
"When input_as_shape is true, the input must be a 1D tensor of "
"data type int64_t");
CAFFE_ENFORCE(input.numel() > 0);
auto* shape_data = input.template data<int64_t>();
std::unique_ptr<int64_t[]> shape_data_copy =
std::make_unique<int64_t[]>(input.dim32(0));
context_.template CopyToCPU<int64_t>(
input.dim32(0), shape_data, shape_data_copy.get());
shape.insert(
shape.end(),
shape_data_copy.get(),
shape_data_copy.get() + input.dim32(0));
}
} else {
auto& input = Input(0);
shape.insert(shape.end(), input.sizes().begin(), input.sizes().end());
}
shape.insert(shape.end(), extra_shape_.begin(), extra_shape_.end());
output->Resize(shape);
shape_ = shape;
} else {
output->Resize(shape_);
}
return Fill(output);
}
virtual bool Fill(Tensor* output) = 0;
protected:
vector<int64_t> shape_;
vector<int64_t> extra_shape_;
bool input_as_shape_;
};
template <typename T, class Context>
class UniformFillOp final : public FillerOp<Context> {
public:
USE_OPERATOR_CONTEXT_FUNCTIONS;
template <class... Args>
explicit UniformFillOp(Args&&... args)
: FillerOp<Context>(std::forward<Args>(args)...),
min_(this->template GetSingleArgument<T>("min", 0)),
max_(this->template GetSingleArgument<T>("max", 1)) {
if (InputSize() == 3) {
CAFFE_ENFORCE(
!this->template HasSingleArgumentOfType<T>("min"),
"Cannot set both min arg and min input blob");
CAFFE_ENFORCE(
!this->template HasSingleArgumentOfType<T>("max"),
"Cannot set both max arg and max input blob");
} else {
CAFFE_ENFORCE_LT(
min_, max_, "Max value should be bigger than min value.");
}
}
bool Fill(Tensor* output) override {
T min = min_;
T max = max_;
if (InputSize() == 3) {
CAFFE_ENFORCE_EQ(1, Input(1).numel(), "min blob must be scalar");
CAFFE_ENFORCE_EQ(1, Input(2).numel(), "max blob must be scalar");
min = *Input(1).template data<T>();
max = *Input(2).template data<T>();
if (min > max) {
auto shape = output->sizes().vec();
shape[0] = 0;
output->Resize(shape);
output->template mutable_data<T>();
return true;
}
}
math::RandUniform<T, Context>(
output->numel(),
min,
max,
output->template mutable_data<T>(),
&context_);
return true;
}
private:
T min_;
T max_;
};
template <class Context>
class UniqueUniformFillOp final : public FillerOp<Context> {
public:
USE_OPERATOR_CONTEXT_FUNCTIONS;
template <class... Args>
explicit UniqueUniformFillOp(Args&&... args)
: FillerOp<Context>(std::forward<Args>(args)...) {
TensorProto_DataType dtype =
static_cast<TensorProto_DataType>(this->template GetSingleArgument<int>(
"dtype", TensorProto_DataType_INT32));
switch (dtype) {
case TensorProto_DataType_INT32:
CheckRange<int>();
body_ = &UniqueUniformFillOp::FillWithType<int>;
break;
case TensorProto_DataType_INT64:
CheckRange<int64_t>();
body_ = &UniqueUniformFillOp::FillWithType<int64_t>;
break;
case TensorProto_DataType_UNDEFINED:
CAFFE_THROW(
"UniqueUniformFill op cannot have undefined 'dtype' argument");
// break;
default:
CAFFE_THROW("Unexpected 'dtype' argument value: ", dtype);
}
}
bool Fill(Tensor* output) override {
return (this->*body_)(output);
}
private:
template <typename T>
void CheckRange() {
CAFFE_ENFORCE(this->template HasSingleArgumentOfType<T>("min"));
CAFFE_ENFORCE(this->template HasSingleArgumentOfType<T>("max"));
CAFFE_ENFORCE_LT(
this->template GetSingleArgument<T>("min", 0),
this->template GetSingleArgument<T>("max", 0),
"Max value should be bigger than min value.");
}
template <typename T>
bool FillWithType(Tensor* output) {
T min = this->template GetSingleArgument<T>("min", 0);
T max = this->template GetSingleArgument<T>("max", 0);
const T* avoid_data = nullptr;
size_t avoid_size = 0;
if (InputSize() >= 2) {
auto& avoid = Input(1);
avoid_data = avoid.template data<T>();
avoid_size = avoid.numel();
}
math::RandUniformUnique<T, Context>(
output->numel(),
min,
max,
output->template mutable_data<T>(),
avoid_size,
avoid_data,
&context_);
return true;
}
bool (UniqueUniformFillOp::*body_)(Tensor* output);
};
template <class Context>
class ConstantFillOp final : public FillerOp<Context> {
public:
USE_OPERATOR_CONTEXT_FUNCTIONS;
template <class... Args>
explicit ConstantFillOp(Args&&... args)
: FillerOp<Context>(std::forward<Args>(args)...) {
TensorProto_DataType dtype =
static_cast<TensorProto_DataType>(this->template GetSingleArgument<int>(
"dtype", TensorProto_DataType_FLOAT));
if (!OperatorBase::HasArgument("dtype") &&
OperatorBase::HasArgument("value")) {
// If 'dtype' is not provided, infer type based on the type of 'value'
// Currently, single argument contains either float, int64 or bytes
if (this->template HasSingleArgumentOfType<float>("value")) {
dtype = TensorProto_DataType_FLOAT;
} else if (this->template HasSingleArgumentOfType<int64_t>("value")) {
dtype = TensorProto_DataType_INT64;
} else {
CAFFE_THROW("Argument 'value' is of unexpected type");
}
VLOG(1) << "Argument 'dtype' is not provided. Assume the data type is "
<< "the same as that of argument 'value': " << dtype;
}
switch (dtype) {
case TensorProto_DataType_FLOAT:
body_ = &ConstantFillOp::FillWithType<float>;
break;
case TensorProto_DataType_DOUBLE:
body_ = &ConstantFillOp::FillWithType<double>;
break;
case TensorProto_DataType_BOOL:
body_ = &ConstantFillOp::FillWithType<bool>;
break;
case TensorProto_DataType_INT8:
body_ = &ConstantFillOp::FillWithType<int8_t>;
break;
case TensorProto_DataType_INT16:
body_ = &ConstantFillOp::FillWithType<int16_t>;
break;
case TensorProto_DataType_INT32:
body_ = &ConstantFillOp::FillWithType<int>;
break;
case TensorProto_DataType_INT64:
body_ = &ConstantFillOp::FillWithType<int64_t>;
break;
case TensorProto_DataType_UINT8:
body_ = &ConstantFillOp::FillWithType<uint8_t>;
break;
case TensorProto_DataType_UINT16:
body_ = &ConstantFillOp::FillWithType<uint16_t>;
break;
case TensorProto_DataType_STRING:
body_ = &ConstantFillOp::FillWithString;
break;
case TensorProto_DataType_UNDEFINED:
CAFFE_THROW("ConstantFill op cannot have undefined 'dtype' argument");
// break;
default:
CAFFE_THROW("Unexpected 'dtype' argument value: ", dtype);
}
}
bool Fill(Tensor* output) override {
return (this->*body_)(output);
}
template <typename T>
bool FillWithType(Tensor* output) {
T value = this->template GetSingleArgument<T>("value", 0);
if (InputSize() == 2) {
auto& value_vec = Input(1);
if (value_vec) {
CAFFE_ENFORCE_EQ(
value_vec.size(), 1, "value vector must have 1 element");
value = value_vec.template data<T>()[0];
}
}
auto* data = output->template mutable_data<T>();
if (output->numel()) {
math::Set<T, Context>(output->numel(), value, data, &context_);
}
return true;
}
bool FillWithString(Tensor* output) {
CAFFE_ENFORCE_LT(
InputSize(), 2, "constant fill string from tensor is not supported");
auto value = this->template GetSingleArgument<std::string>("value", "");
auto* data = output->template mutable_data<std::string>();
for (int i = 0; i < output->numel(); ++i) {
data[i] = value;
}
return true;
}
private:
bool (ConstantFillOp::*body_)(Tensor* output);
};
template <class Context>
class DiagonalFillOp final : public FillerOp<Context> {
public:
USE_OPERATOR_CONTEXT_FUNCTIONS;
template <class... Args>
explicit DiagonalFillOp(Args&&... args)
: FillerOp<Context>(std::forward<Args>(args)...) {
TensorProto_DataType dtype =
static_cast<TensorProto_DataType>(this->template GetSingleArgument<int>(
"dtype", TensorProto_DataType_FLOAT));
if (!OperatorBase::HasArgument("dtype") &&
OperatorBase::HasArgument("value")) {
// If 'dtype' is not provided, infer type based on the type of 'value'
// Currently, single argument contains either float, int64 or bytes
if (this->template HasSingleArgumentOfType<float>("value")) {
dtype = TensorProto_DataType_FLOAT;
} else if (this->template HasSingleArgumentOfType<int64_t>("value")) {
dtype = TensorProto_DataType_INT64;
} else {
CAFFE_THROW("Argument 'value' is of unexpected type");
}
VLOG(1) << "Argument 'dtype' is not provided. Assume the data type is "
<< "the same as that of argument 'value': " << dtype;
}
switch (dtype) {
case TensorProto_DataType_FLOAT:
body_ = &DiagonalFillOp::FillWithType<float>;
break;
case TensorProto_DataType_DOUBLE:
body_ = &DiagonalFillOp::FillWithType<double>;
break;
case TensorProto_DataType_BOOL:
body_ = &DiagonalFillOp::FillWithType<bool>;
break;
case TensorProto_DataType_INT8:
body_ = &DiagonalFillOp::FillWithType<int8_t>;
break;
case TensorProto_DataType_INT16:
body_ = &DiagonalFillOp::FillWithType<int16_t>;
break;
case TensorProto_DataType_INT32:
body_ = &DiagonalFillOp::FillWithType<int>;
break;
case TensorProto_DataType_INT64:
body_ = &DiagonalFillOp::FillWithType<int64_t>;
break;
case TensorProto_DataType_UINT8:
body_ = &DiagonalFillOp::FillWithType<uint8_t>;
break;
case TensorProto_DataType_UINT16:
body_ = &DiagonalFillOp::FillWithType<uint16_t>;
break;
case TensorProto_DataType_UNDEFINED:
CAFFE_THROW("Cannot have undefined 'dtype' argument");
default:
CAFFE_THROW("Unexpected 'dtype' argument value: ", dtype);
}
}
bool Fill(Tensor* output) override {
return (this->*body_)(output);
}
template <typename T>
bool FillWithType(Tensor* output);
private:
void VerifyOutputShape(Tensor* output) {
CAFFE_ENFORCE(output->dim() >= 2, "Input shape must be >= 2D");
}
int64_t GetStepSize(Tensor* output) {
int64_t step;
if (output->dim() == 2) {
step = output->size(1) + 1;
} else {
int64_t prev_i = output->size(0);
for (auto i : output->sizes()) {
if (i != prev_i) {
CAFFE_THROW("All dimensions of input must be of equal length");
}
}
vector<int64_t> cumprod(output->dim());
auto dims = output->sizes();
std::partial_sum(
dims.begin(),
dims.end() - 1,
cumprod.begin(),
std::multiplies<int64_t>());
step = 1 +
std::accumulate(
cumprod.begin(), cumprod.end(), static_cast<int64_t>(0));
VLOG(0) << step;
}
return step;
}
bool (DiagonalFillOp::*body_)(Tensor* output);
};
template <typename T, class Context>
class GaussianFillOp final : public FillerOp<Context> {
public:
USE_OPERATOR_CONTEXT_FUNCTIONS;
template <class... Args>
explicit GaussianFillOp(Args&&... args)
: FillerOp<Context>(std::forward<Args>(args)...),
mean_(this->template GetSingleArgument<float>("mean", 0)),
std_(this->template GetSingleArgument<float>("std", 1)) {
TORCH_DCHECK_GT(std_, 0) << "Standard deviation should be nonnegative.";
}
bool Fill(Tensor* output) override {
math::RandGaussian<T, Context>(
output->numel(),
mean_,
std_,
output->template mutable_data<T>(),
&context_);
return true;
}
private:
T mean_;
T std_;
};
template <typename T, class Context>
class XavierFillOp final : public FillerOp<Context> {
public:
USE_OPERATOR_CONTEXT_FUNCTIONS;
template <class... Args>
explicit XavierFillOp(Args&&... args)
: FillerOp<Context>(std::forward<Args>(args)...) {}
bool Fill(Tensor* output) override {
const int fan_in = output->numel() / output->dim32(0);
T scale = std::sqrt(T(3) / fan_in);
math::RandUniform<T, Context>(
output->numel(),
-scale,
scale,
output->template mutable_data<T>(),
&context_);
return true;
}
};
template <typename T, class Context>
class MSRAFillOp final : public FillerOp<Context> {
public:
USE_OPERATOR_CONTEXT_FUNCTIONS;
template <class... Args>
explicit MSRAFillOp(Args&&... args)
: FillerOp<Context>(std::forward<Args>(args)...) {}
bool Fill(Tensor* output) override {
const int fan_out = output->numel() / output->dim32(1);
T scale = std::sqrt(T(2) / fan_out);
math::RandGaussian<T, Context>(
output->numel(),
0.0,
scale,
output->template mutable_data<T>(),
&context_);
return true;
}
};
// This is mostly used just as a debugging purpose stuff: it fills a tensor
// sequentially with values 0, 1, 2..., which can then be used to check e.g.
// reshape operations by allowing one to read the indices more easily.
template <typename T, class Context>
class RangeFillOp final : public FillerOp<Context> {
public:
USE_OPERATOR_CONTEXT_FUNCTIONS;
template <class... Args>
explicit RangeFillOp(Args&&... args)
: FillerOp<Context>(std::forward<Args>(args)...) {}
bool Fill(Tensor* output) override;
};
template <class Context>
class LengthsRangeFillOp : public Operator<Context> {
public:
USE_OPERATOR_CONTEXT_FUNCTIONS;
USE_SIMPLE_CTOR_DTOR(LengthsRangeFillOp);
bool RunOnDevice() override {
auto& input = Input(0);
auto* input_data = input.template data<int32_t>();
CAFFE_ENFORCE_EQ(input.dim(), 1, "Input must be a vector.");
auto len_sum = std::accumulate(input_data, input_data + input.numel(), 0);
auto* output = Output(0, {len_sum}, at::dtype<int32_t>());
auto* output_data = output->template mutable_data<int32_t>();
int32_t offset = 0;
for (const auto i : c10::irange(input.numel())) {
auto len = input_data[i];
auto start = output_data + offset;
std::iota(
start,
start + len,
0); // make the third argument the arg of this operator
offset += len;
}
return true;
}
};
template <int VALUE_TYPE = TensorProto_DataType_FLOAT>
inline std::vector<TensorShape> FillerTensorInference(
const OperatorDef& def,
const vector<TensorShape>& in) {
vector<TensorShape> out(1);
ArgumentHelper helper(def);
out[0].set_data_type(static_cast<TensorProto_DataType>(
helper.GetSingleArgument<int>("dtype", VALUE_TYPE)));
if (in.size()) {
// TODO
bool input_as_shape =
helper.GetSingleArgument<bool>("input_as_shape", false);
if (input_as_shape) {
out[0].set_unknown_shape(true);
return out;
}
for (auto d : in[0].dims()) {
out[0].add_dims(d);
}
} else {
auto shape = helper.GetRepeatedArgument<int64_t>("shape");
for (auto d : shape) {
out[0].add_dims(d);
}
}
return out;
}
} // namespace caffe2
#endif // CAFFE2_OPERATORS_FILLER_OP_H_