forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathgenerate_proposals_op.cc
447 lines (391 loc) · 16 KB
/
generate_proposals_op.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
#include "caffe2/operators/generate_proposals_op.h"
#include "caffe2/operators/generate_proposals_op_util_boxes.h"
#include "generate_proposals_op_util_nms.h"
namespace caffe2 {
namespace {
// Compute the 1-d index of a n-dimensional contiguous row-major tensor for
// a given n-dimensional index 'index'
size_t ComputeStartIndex(
const TensorCPU& tensor,
const std::vector<int>& index) {
TORCH_DCHECK_EQ(index.size(), tensor.dim());
size_t ret = 0;
// NOLINTNEXTLINE(clang-diagnostic-sign-compare)
for (int i = 0; i < index.size(); i++) {
ret += index[i] * tensor.size_from_dim(i + 1);
}
return ret;
}
// Get a sub tensor view from 'tensor' using data pointer from 'tensor'
template <class T>
utils::ConstTensorView<T> GetSubTensorView(
const TensorCPU& tensor,
int dim0_start_index) {
TORCH_DCHECK_EQ(tensor.dtype().itemsize(), sizeof(T));
if (tensor.numel() == 0) {
return utils::ConstTensorView<T>(nullptr, {});
}
std::vector<int> start_dims(tensor.dim(), 0);
start_dims.at(0) = dim0_start_index;
auto st_idx = ComputeStartIndex(tensor, start_dims);
auto ptr = tensor.data<T>() + st_idx;
auto input_dims = tensor.sizes();
std::vector<int> ret_dims(input_dims.begin() + 1, input_dims.end());
utils::ConstTensorView<T> ret(ptr, ret_dims);
return ret;
}
} // namespace
namespace utils {
ERMatXf ComputeAllAnchors(
const TensorCPU& anchors,
int height,
int width,
float feat_stride) {
const auto K = height * width;
const auto A = anchors.size(0);
const auto box_dim = anchors.size(1);
CAFFE_ENFORCE(box_dim == 4 || box_dim == 5);
ERMatXf shift_x = (ERVecXf::LinSpaced(width, 0.0, width - 1.0) * feat_stride)
.replicate(height, 1);
ERMatXf shift_y = (EVecXf::LinSpaced(height, 0.0, height - 1.0) * feat_stride)
.replicate(1, width);
Eigen::MatrixXf shifts(K, box_dim);
if (box_dim == 4) {
// Upright boxes in [x1, y1, x2, y2] format
shifts << ConstEigenVectorMap<float>(shift_x.data(), shift_x.size()),
ConstEigenVectorMap<float>(shift_y.data(), shift_y.size()),
ConstEigenVectorMap<float>(shift_x.data(), shift_x.size()),
ConstEigenVectorMap<float>(shift_y.data(), shift_y.size());
} else {
// Rotated boxes in [ctr_x, ctr_y, w, h, angle] format.
// Zero shift for width, height and angle.
ERMatXf shift_zero = ERMatXf::Constant(height, width, 0.0);
shifts << ConstEigenVectorMap<float>(shift_x.data(), shift_x.size()),
ConstEigenVectorMap<float>(shift_y.data(), shift_y.size()),
ConstEigenVectorMap<float>(shift_zero.data(), shift_zero.size()),
ConstEigenVectorMap<float>(shift_zero.data(), shift_zero.size()),
ConstEigenVectorMap<float>(shift_zero.data(), shift_zero.size());
}
// Broacast anchors over shifts to enumerate all anchors at all positions
// in the (H, W) grid:
// - add A anchors of shape (1, A, box_dim) to
// - K shifts of shape (K, 1, box_dim) to get
// - all shifted anchors of shape (K, A, box_dim)
// - reshape to (K*A, box_dim) shifted anchors
ConstEigenMatrixMap<float> anchors_vec(
anchors.template data<float>(), 1, A * box_dim);
// equivalent to python code
// all_anchors = (
// self._model.anchors.reshape((1, A, box_dim)) +
// shifts.reshape((1, K, box_dim)).transpose((1, 0, 2)))
// all_anchors = all_anchors.reshape((K * A, box_dim))
// all_anchors_vec: (K, A * box_dim)
ERMatXf all_anchors_vec =
anchors_vec.replicate(K, 1) + shifts.rowwise().replicate(A);
// use the following to reshape to (K * A, box_dim)
// Eigen::Map<const ERMatXf> all_anchors(
// all_anchors_vec.data(), K * A, box_dim);
return all_anchors_vec;
}
ERArrXXf ComputeSortedAnchors(
const Eigen::Map<const ERArrXXf>& anchors,
int height,
int width,
float feat_stride,
const vector<int>& order) {
const auto box_dim = anchors.cols();
CAFFE_ENFORCE(box_dim == 4 || box_dim == 5);
// Order is flattened in (A, H, W) format. Unravel the indices.
const auto& order_AHW = utils::AsEArrXt(order);
const auto& order_AH = order_AHW / width;
const auto& order_W = order_AHW - order_AH * width;
const auto& order_A = order_AH / height;
const auto& order_H = order_AH - order_A * height;
// Generate shifts for each location in the H * W grid corresponding
// to the sorted scores in (A, H, W) order.
const auto& shift_x = order_W.cast<float>() * feat_stride;
const auto& shift_y = order_H.cast<float>() * feat_stride;
Eigen::MatrixXf shifts(order.size(), box_dim);
if (box_dim == 4) {
// Upright boxes in [x1, y1, x2, y2] format
shifts << shift_x, shift_y, shift_x, shift_y;
} else {
// Rotated boxes in [ctr_x, ctr_y, w, h, angle] format.
// Zero shift for width, height and angle.
const auto& shift_zero = EArrXf::Constant(order.size(), 0.0);
shifts << shift_x, shift_y, shift_zero, shift_zero, shift_zero;
}
// Apply shifts to the relevant anchors.
// Equivalent to python code `all_anchors = self._anchors[order_A] + shifts`
ERArrXXf anchors_sorted;
utils::GetSubArrayRows(anchors, order_A, &anchors_sorted);
const auto& all_anchors_sorted = anchors_sorted + shifts.array();
return all_anchors_sorted;
}
} // namespace utils
template <>
void GenerateProposalsOp<CPUContext>::ProposalsForOneImage(
const Eigen::Array3f& im_info,
const Eigen::Map<const ERArrXXf>& anchors,
const utils::ConstTensorView<float>& bbox_deltas_tensor,
const utils::ConstTensorView<float>& scores_tensor,
ERArrXXf* out_boxes,
EArrXf* out_probs) const {
const auto& post_nms_topN = rpn_post_nms_topN_;
const auto& nms_thresh = rpn_nms_thresh_;
const auto& min_size = rpn_min_size_;
const int box_dim = static_cast<int>(anchors.cols());
CAFFE_ENFORCE(box_dim == 4 || box_dim == 5);
CAFFE_ENFORCE_EQ(bbox_deltas_tensor.ndim(), 3);
CAFFE_ENFORCE_EQ(bbox_deltas_tensor.dim(0) % box_dim, 0);
auto A = bbox_deltas_tensor.dim(0) / box_dim;
auto H = bbox_deltas_tensor.dim(1);
auto W = bbox_deltas_tensor.dim(2);
auto K = H * W;
CAFFE_ENFORCE_EQ(A, anchors.rows());
// scores are (A, H, W) format from conv output.
// Maintain the same order without transposing (which is slow)
// and compute anchors accordingly.
CAFFE_ENFORCE_EQ(scores_tensor.ndim(), 3);
CAFFE_ENFORCE_EQ(scores_tensor.dims(), (vector<int>{A, H, W}));
Eigen::Map<const EArrXf> scores(scores_tensor.data(), scores_tensor.size());
std::vector<int> order(scores.size());
std::iota(order.begin(), order.end(), 0);
if (rpn_pre_nms_topN_ <= 0 || rpn_pre_nms_topN_ >= scores.size()) {
// 4. sort all (proposal, score) pairs by score from highest to lowest
// 5. take top pre_nms_topN (e.g. 6000)
std::stable_sort(order.begin(), order.end(), [&scores](int lhs, int rhs) {
return scores[lhs] > scores[rhs];
});
} else {
// Avoid sorting possibly large arrays; First partition to get top K
// unsorted and then sort just those (~20x faster for 200k scores)
std::partial_sort(
order.begin(),
order.begin() + rpn_pre_nms_topN_,
order.end(),
[&scores](int lhs, int rhs) { return scores[lhs] > scores[rhs]; });
order.resize(rpn_pre_nms_topN_);
}
EArrXf scores_sorted;
utils::GetSubArray(scores, utils::AsEArrXt(order), &scores_sorted);
// bbox_deltas are (A * box_dim, H, W) format from conv output.
// Order them based on scores maintaining the same format without
// expensive transpose.
// Note that order corresponds to (A, H * W) in row-major whereas
// bbox_deltas are in (A, box_dim, H * W) in row-major. Hence, we
// obtain a sub-view of bbox_deltas for each dim (4 for RPN, 5 for RRPN)
// in (A, H * W) with an outer stride of box_dim * H * W. Then we apply
// the ordering and filtering for each dim iteratively.
ERArrXXf bbox_deltas_sorted(order.size(), box_dim);
EArrXf bbox_deltas_per_dim(A * K);
EigenOuterStride stride(box_dim * K);
for (int j = 0; j < box_dim; ++j) {
Eigen::Map<ERMatXf>(bbox_deltas_per_dim.data(), A, K) =
Eigen::Map<const ERMatXf, 0, EigenOuterStride>(
bbox_deltas_tensor.data() + j * K, A, K, stride);
// NOLINTNEXTLINE(clang-diagnostic-sign-compare)
for (int i = 0; i < order.size(); ++i) {
bbox_deltas_sorted(i, j) = bbox_deltas_per_dim[order[i]];
}
}
// Compute anchors specific to the ordered and pre-filtered indices
// in (A, H, W) format.
const auto& all_anchors_sorted =
utils::ComputeSortedAnchors(anchors, H, W, feat_stride_, order);
// Transform anchors into proposals via bbox transformations
static const std::vector<float> bbox_weights{1.0, 1.0, 1.0, 1.0};
auto proposals = utils::bbox_transform(
all_anchors_sorted,
bbox_deltas_sorted,
bbox_weights,
utils::BBOX_XFORM_CLIP_DEFAULT,
legacy_plus_one_,
angle_bound_on_,
angle_bound_lo_,
angle_bound_hi_);
// 2. clip proposals to image (may result in proposals with zero area
// that will be removed in the next step)
proposals = utils::clip_boxes(
// NOLINTNEXTLINE(cppcoreguidelines-narrowing-conversions,bugprone-narrowing-conversions)
proposals, im_info[0], im_info[1], clip_angle_thresh_, legacy_plus_one_);
// 3. remove predicted boxes with either height or width < min_size
auto keep =
utils::filter_boxes(proposals, min_size, im_info, legacy_plus_one_);
TORCH_DCHECK_LE(keep.size(), scores_sorted.size());
// 6. apply loose nms (e.g. threshold = 0.7)
// 7. take after_nms_topN (e.g. 300)
// 8. return the top proposals (-> RoIs top)
// NOLINTNEXTLINE(clang-diagnostic-sign-compare)
if (post_nms_topN > 0 && post_nms_topN < keep.size()) {
keep = utils::nms_cpu(
proposals,
scores_sorted,
keep,
nms_thresh,
post_nms_topN,
legacy_plus_one_);
} else {
keep = utils::nms_cpu(
proposals, scores_sorted, keep, nms_thresh, -1, legacy_plus_one_);
}
// Generate outputs
utils::GetSubArrayRows(proposals, utils::AsEArrXt(keep), out_boxes);
utils::GetSubArray(scores_sorted, utils::AsEArrXt(keep), out_probs);
}
template <>
bool GenerateProposalsOp<CPUContext>::RunOnDevice() {
const auto& scores = Input(0);
const auto& bbox_deltas = Input(1);
const auto& im_info_tensor = Input(2);
const auto& anchors_tensor = Input(3);
CAFFE_ENFORCE_EQ(scores.dim(), 4, scores.dim());
CAFFE_ENFORCE(scores.template IsType<float>(), scores.dtype().name());
const auto num_images = scores.size(0);
const auto A = scores.size(1);
const auto height = scores.size(2);
const auto width = scores.size(3);
const auto box_dim = anchors_tensor.size(1);
CAFFE_ENFORCE(box_dim == 4 || box_dim == 5);
// bbox_deltas: (num_images, A * box_dim, H, W)
CAFFE_ENFORCE_EQ(
bbox_deltas.sizes(),
(at::ArrayRef<int64_t>{num_images, box_dim * A, height, width}));
// im_info_tensor: (num_images, 3), format [height, width, scale; ...]
CAFFE_ENFORCE_EQ(im_info_tensor.sizes(), (vector<int64_t>{num_images, 3}));
CAFFE_ENFORCE(
im_info_tensor.template IsType<float>(), im_info_tensor.dtype().name());
// anchors: (A, box_dim)
CAFFE_ENFORCE_EQ(anchors_tensor.sizes(), (vector<int64_t>{A, box_dim}));
CAFFE_ENFORCE(
anchors_tensor.template IsType<float>(), anchors_tensor.dtype().name());
Eigen::Map<const ERArrXXf> im_info(
im_info_tensor.data<float>(),
im_info_tensor.size(0),
im_info_tensor.size(1));
Eigen::Map<const ERArrXXf> anchors(
anchors_tensor.data<float>(),
anchors_tensor.size(0),
anchors_tensor.size(1));
std::vector<ERArrXXf> im_boxes(num_images);
std::vector<EArrXf> im_probs(num_images);
for (int i = 0; i < num_images; i++) {
auto cur_im_info = im_info.row(i);
auto cur_bbox_deltas = GetSubTensorView<float>(bbox_deltas, i);
auto cur_scores = GetSubTensorView<float>(scores, i);
ERArrXXf& im_i_boxes = im_boxes[i];
EArrXf& im_i_probs = im_probs[i];
ProposalsForOneImage(
cur_im_info,
anchors,
cur_bbox_deltas,
cur_scores,
&im_i_boxes,
&im_i_probs);
}
int roi_counts = 0;
for (int64_t i = 0; i < num_images; i++) {
roi_counts += im_boxes[i].rows();
}
const int64_t roi_col_count = box_dim + 1;
auto *const out_rois = Output(0, {roi_counts, roi_col_count}, at::dtype<float>());
auto *const out_rois_probs = Output(1, {roi_counts}, at::dtype<float>());
if(roi_counts == 0){
return true;
}
float* out_rois_ptr = out_rois->template mutable_data<float>();
float* out_rois_probs_ptr = out_rois_probs->template mutable_data<float>();
for (int64_t i = 0; i < num_images; i++) {
const ERArrXXf& im_i_boxes = im_boxes[i];
const EArrXf& im_i_probs = im_probs[i];
int csz = im_i_boxes.rows();
// write rois
Eigen::Map<ERArrXXf> cur_rois(out_rois_ptr, csz, roi_col_count);
cur_rois.col(0).setConstant(i);
cur_rois.block(0, 1, csz, box_dim) = im_i_boxes;
// write rois_probs
Eigen::Map<EArrXf>(out_rois_probs_ptr, csz) = im_i_probs;
out_rois_ptr += csz * roi_col_count;
out_rois_probs_ptr += csz;
}
return true;
}
REGISTER_CPU_OPERATOR(GenerateProposals, GenerateProposalsOp<CPUContext>);
// For backward compatibility
REGISTER_CPU_OPERATOR(GenerateProposalsCPP, GenerateProposalsOp<CPUContext>);
OPERATOR_SCHEMA(GenerateProposals)
.NumInputs(4)
.NumOutputs(2)
.SetDoc(R"DOC(
Generate bounding box proposals for Faster RCNN. The propoasls are generated for
a list of images based on image score 'score', bounding box regression result
'deltas' as well as predefined bounding box shapes 'anchors'. Greedy
non-maximum suppression is applied to generate the final bounding boxes.
)DOC")
.Arg("spatial_scale", "(float) spatial scale")
.Arg("pre_nms_topN", "(int) RPN_PRE_NMS_TOP_N")
.Arg("post_nms_topN", "(int) RPN_POST_NMS_TOP_N")
.Arg("nms_thresh", "(float) RPN_NMS_THRESH")
.Arg("min_size", "(float) RPN_MIN_SIZE")
.Arg(
"angle_bound_on",
"bool (default true). If set, for rotated boxes, angle is "
"normalized to be within [angle_bound_lo, angle_bound_hi].")
.Arg(
"angle_bound_lo",
"int (default -90 degrees). If set, for rotated boxes, angle is "
"normalized to be within [angle_bound_lo, angle_bound_hi].")
.Arg(
"angle_bound_hi",
"int (default 90 degrees). If set, for rotated boxes, angle is "
"normalized to be within [angle_bound_lo, angle_bound_hi].")
.Arg(
"clip_angle_thresh",
"float (default 1.0 degrees). For RRPN, clip almost horizontal boxes "
"within this threshold of tolerance for backward compatibility. "
"Set to negative value for no clipping.")
.Input(0, "scores", "Scores from conv layer, size (img_count, A, H, W)")
.Input(
1,
"bbox_deltas",
"Bounding box deltas from conv layer, "
"size (img_count, 4 * A, H, W)")
.Input(
2,
"im_info",
"Image info, size (img_count, 3), "
"format (height, width, scale)")
.Input(3, "anchors", "Bounding box anchors, size (A, 4)")
.Output(
0,
"rois",
"Proposals, size (n x 5), "
"format (image_index, x1, y1, x2, y2)")
.Output(1, "rois_probs", "scores of proposals, size (n)");
// For backward compatibility
OPERATOR_SCHEMA(GenerateProposalsCPP).NumInputs(4).NumOutputs(2);
SHOULD_NOT_DO_GRADIENT(GenerateProposals);
// For backward compatibility
SHOULD_NOT_DO_GRADIENT(GenerateProposalsCPP);
} // namespace caffe2
// clang-format off
C10_EXPORT_CAFFE2_OP_TO_C10_CPU(
GenerateProposals,
"_caffe2::GenerateProposals("
"Tensor scores, "
"Tensor bbox_deltas, "
"Tensor im_info, "
"Tensor anchors, "
"float spatial_scale, "
"int pre_nms_topN, "
"int post_nms_topN, "
"float nms_thresh, "
"float min_size, "
"bool angle_bound_on, "
"int angle_bound_lo, "
"int angle_bound_hi, "
"float clip_angle_thresh, "
"bool legacy_plus_one"
") -> (Tensor output_0, Tensor output_1)",
caffe2::GenerateProposalsOp<caffe2::CPUContext>);
// clang-format on