forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathhistogram_op.h
86 lines (73 loc) · 2.4 KB
/
histogram_op.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
#pragma once
#include "caffe2/core/operator.h"
#include "c10/util/irange.h"
#include <cmath>
#include <limits>
namespace caffe2 {
template <class Context>
class HistogramOp final : public Operator<Context> {
public:
USE_OPERATOR_CONTEXT_FUNCTIONS;
template <class... Args>
explicit HistogramOp(Args&&... args)
: Operator<Context>(std::forward<Args>(args)...),
bin_edges_(this->template GetRepeatedArgument<float>("bin_edges")) {
CAFFE_ENFORCE_GE(
bin_edges_.size(),
2,
"Number of bin edges must be greater than or equal to 2.");
// NOLINTNEXTLINE(clang-diagnostic-sign-compare)
for (const auto i : c10::irange(1, bin_edges_.size())) {
CAFFE_ENFORCE_GT(
bin_edges_[i],
bin_edges_[i - 1],
"bin_edges must be a strictly increasing sequence of values.");
}
}
bool RunOnDevice() override {
return DispatchHelper<TensorTypes<float, double>>::call(this, Input(0));
}
template <typename T>
bool DoRunWithType() {
CheckInputs();
const auto* histogram = Output(HISTOGRAM);
histogram->Resize(bin_edges_.size() - 1);
auto* histogram_data = histogram->template mutable_data<int64_t>();
math::Set<int64_t, Context>(
bin_edges_.size() - 1, 0, histogram_data, &context_);
for (const auto input_idx : c10::irange(InputSize())) {
const auto& x = Input(input_idx);
const int64_t N = x.numel();
const auto* x_data = x.template data<T>();
for (const auto data_idx : c10::irange(N)) {
const auto bisection_it = std::upper_bound(
bin_edges_.begin(), bin_edges_.end(), x_data[data_idx]);
const int bisection_idx = bisection_it - bin_edges_.begin();
// NOLINTNEXTLINE(clang-diagnostic-sign-compare)
if (bisection_idx > 0 && bisection_idx < bin_edges_.size()) {
histogram_data[bisection_idx - 1]++;
}
}
}
return true;
}
protected:
OUTPUT_TAGS(HISTOGRAM);
private:
vector<float> bin_edges_;
void CheckInputs() {
const auto& input_zero = Input(0);
for (const auto i : c10::irange(1, InputSize())) {
CAFFE_ENFORCE_EQ(
Input(i).dtype(),
input_zero.dtype(),
"All inputs must have the same type; expected ",
input_zero.dtype().name(),
" but got ",
Input(i).dtype().name(),
" for input ",
i);
}
}
};
} // namespace caffe2