forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathintegral_image_op.cu
224 lines (205 loc) · 6.79 KB
/
integral_image_op.cu
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
#include "caffe2/core/context_gpu.h"
#include "caffe2/operators/integral_image_op.h"
namespace caffe2 {
namespace {
__global__ void RowPassKernel(
int count,
int rows_out,
int cols_out,
int chans,
const float* in,
float* out) {
CUDA_1D_KERNEL_LOOP(i, count) {
// Figure out which row, channel, and batch element we're processing
int row = i % rows_out;
int chan = (i / rows_out) % chans;
int ind = i / rows_out / chans;
// Input is (H, W) and output is (H + 1, W + 1)
int rows_in = rows_out - 1;
int cols_in = cols_out - 1;
// Row pointer to input data
// Input data is shift (-1, -1) relative to output data, hence row - 1
const float* row_in_data =
in + cols_in * ((row - 1) + rows_in * (chan + ind * chans));
// Row pointer to output data
float* row_out_data =
out + cols_out * (row + rows_out * (chan + ind * chans));
// The first row and first column of the output is all zeros
row_out_data[0] = 0.;
if (row == 0) {
for (int i = 1; i < cols_out; ++i) {
row_out_data[i] = 0.;
}
} else {
for (int i = 1; i < cols_out; ++i) {
// Recall that input data is shift (-1, -1) relative to the output,
// hence i - 1
row_out_data[i] = row_out_data[i - 1] + row_in_data[i - 1];
}
}
}
}
__global__ void RowPassGradientKernel(
int count,
int rows_out,
int cols_out,
int chans,
const float* in,
float* out) {
CUDA_1D_KERNEL_LOOP(i, count) {
// Figure out which row, channel, and batch element we're processing
int row = i % rows_out;
int chan = (i / rows_out) % chans;
int ind = i / rows_out / chans;
// Input in (H + 1, W + 1) and output is (H + 1, W)
int rows_in = rows_out;
int cols_in = cols_out + 1;
// Col pointer to input data
const float* row_in_data =
in + cols_in * (row + rows_in * (chan + ind * chans));
// Col pointer to output data
float* row_out_data =
out + cols_out * (row + rows_out * (chan + ind * chans));
row_out_data[0] = row_in_data[0];
for (int i = 1; i < cols_out; ++i) {
row_out_data[i] = row_out_data[i - 1] + row_in_data[i];
}
}
}
__global__ void
ColPassKernel(int count, int rows_out, int cols_out, int chans, float* out) {
CUDA_1D_KERNEL_LOOP(i, count) {
// Figure out which col, channel, and batch element we're processing
int col = i % cols_out;
int chan = (i / cols_out) % chans;
int ind = i / cols_out / chans;
float* col_out_data =
out + col + cols_out * rows_out * (chan + ind * chans);
for (int i = 1; i < rows_out; ++i) {
col_out_data[i * cols_out] += col_out_data[(i - 1) * cols_out];
}
}
}
__global__ void ColPassGradientKernel(
int count,
int rows_out,
int cols_out,
int chans,
const float* in,
float* out) {
CUDA_1D_KERNEL_LOOP(i, count) {
// Figure out which col, channel, and batch element we're processing
int col = i % cols_out;
int chan = (i / cols_out) % chans;
int ind = i / cols_out / chans;
// Input is (H + 1, W) and output is (H, W)
int rows_in = rows_out + 1;
int cols_in = cols_out;
// Col pointer to input data
const float* col_in_data =
in + col + cols_in * rows_in * (chan + ind * chans);
// Col pointer to output data
float* col_out_data =
out + col + cols_out * rows_out * (chan + ind * chans);
col_out_data[0] = col_in_data[0];
for (int i = 1; i < rows_out; ++i) {
col_out_data[i * cols_out] =
col_out_data[(i - 1) * cols_out] + col_in_data[i * cols_in];
}
}
}
} // namespace
template <>
bool IntegralImageOp<float, CUDAContext>::RunOnDevice() {
auto& X = Input(0);
CAFFE_ENFORCE(X.dim() == 4, "Only supports 4D tensors for the momement");
// Input is (N, C, H, W)
// Output is (N, C, H + 1, W + 1)
vector<int64_t> out_shape(X.sizes().vec());
out_shape[2] += 1; // H + 1 output size
out_shape[3] += 1; // W + 1 output size
auto* Y = Output(0, out_shape, at::dtype<float>());
const int chans = X.dim32(1);
const int rows_out = Y->dim32(2);
const int cols_out = Y->dim32(3);
// Integral image over rows of input X
const int row_pass_size = X.dim32(0) * chans * rows_out;
RowPassKernel<<<
CAFFE_GET_BLOCKS(row_pass_size),
CAFFE_CUDA_NUM_THREADS,
0,
context_.cuda_stream()>>>(
row_pass_size,
rows_out,
cols_out,
chans,
X.data<float>(),
Y->template mutable_data<float>());
C10_CUDA_KERNEL_LAUNCH_CHECK();
// Integral image over columns of the integral image over rows
const int col_pass_size = X.dim32(0) * chans * cols_out;
ColPassKernel<<<
CAFFE_GET_BLOCKS(col_pass_size),
CAFFE_CUDA_NUM_THREADS,
0,
context_.cuda_stream()>>>(
col_pass_size,
rows_out,
cols_out,
chans,
Y->template mutable_data<float>());
C10_CUDA_KERNEL_LAUNCH_CHECK();
return true;
}
template <>
bool IntegralImageGradientOp<float, CUDAContext>::RunOnDevice() {
auto& X = Input(0); // Original input to "forward" op
auto& dY = Input(1); // Gradient of net w.r.t. output of "forward" op
// (aka "gradOutput")
auto* dX = Output(
0, X.sizes(), at::dtype<float>()); // Gradient of net w.r.t. input to
// "forward" op (aka "gradInput")
// Row pass reduces shape of dY from (N, C, H + 1, W + 1)
// to (N, C, H + 1, W)
// Col pass reduces shape to (N, C, H, W)
vector<int64_t> row_pass_shape(dY.sizes().vec());
row_pass_shape[3] -= 1;
ReinitializeTensor(&row_pass_buffer_, row_pass_shape, at::dtype<float>().device(CUDA));
const int chans = row_pass_buffer_.dim32(1);
const int rows_out = row_pass_buffer_.dim32(2);
const int cols_out = row_pass_buffer_.dim32(3);
// Integral image over rows of input X
const int row_pass_size = X.dim32(0) * chans * rows_out;
RowPassGradientKernel<<<
CAFFE_GET_BLOCKS(row_pass_size),
CAFFE_CUDA_NUM_THREADS,
0,
context_.cuda_stream()>>>(
row_pass_size,
rows_out,
cols_out,
chans,
dY.data<float>(),
row_pass_buffer_.mutable_data<float>());
C10_CUDA_KERNEL_LAUNCH_CHECK();
// Integral image over columns of the integral image over rows
const int col_pass_size = X.dim32(0) * chans * cols_out;
ColPassGradientKernel<<<
CAFFE_GET_BLOCKS(col_pass_size),
CAFFE_CUDA_NUM_THREADS,
0,
context_.cuda_stream()>>>(
col_pass_size,
rows_out - 1,
cols_out,
chans,
row_pass_buffer_.data<float>(),
dX->template mutable_data<float>());
C10_CUDA_KERNEL_LAUNCH_CHECK();
return true;
}
REGISTER_CUDA_OPERATOR(IntegralImage, IntegralImageOp<float, CUDAContext>);
REGISTER_CUDA_OPERATOR(
IntegralImageGradient,
IntegralImageGradientOp<float, CUDAContext>);
} // namespace caffe2