forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathis_empty_op.cc
75 lines (51 loc) · 1.52 KB
/
is_empty_op.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
#include "is_empty_op.h"
namespace caffe2 {
REGISTER_CPU_OPERATOR(IsEmpty, IsEmptyOp<CPUContext>);
OPERATOR_SCHEMA(IsEmpty)
.NumInputs(1)
.NumOutputs(1)
.SetDoc(R"DOC(
The *IsEmpty* op accepts a single input $tensor$, and produces a single boolean output $is\_empty$. The output is *True* if and only if $tensor$ has size == 0.
Github Links:
- https://github.com/caffe2/caffe2/blob/master/caffe2/operators/utility_ops.cc
- https://github.com/caffe2/caffe2/blob/master/caffe2/operators/utility_ops.h
<details>
<summary> <b>Example</b> </summary>
**Code**
```
workspace.ResetWorkspace()
op = core.CreateOperator(
"IsEmpty",
["tensor"],
["is_empty"],
)
// Use a not-empty tensor
workspace.FeedBlob("tensor", np.random.randn(2, 2).astype(np.float32))
print("tensor:\n", workspace.FetchBlob("tensor"))
workspace.RunOperatorOnce(op)
print("is_empty: ", workspace.FetchBlob("is_empty"),"\n")
// Use an empty tensor
workspace.FeedBlob("tensor", np.empty(0))
print("tensor:\n", workspace.FetchBlob("tensor"))
workspace.RunOperatorOnce(op)
print("is_empty: ", workspace.FetchBlob("is_empty"))
```
**Result**
```
tensor:
[[ 0.26018378 0.6778789 ]
[-1.3097627 -0.40083608]]
is_empty: False
tensor:
[]
is_empty: True
```
</details>
)DOC")
.ScalarType(::caffe2::TensorProto_DataType::TensorProto_DataType_BOOL)
.Input(0, "tensor", "Input data tensor to check if empty.")
.Output(
0,
"is_empty",
"Output scalar boolean tensor. True if input has size == 0.");
} // namespace caffe2