forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathkey_split_ops.h
54 lines (48 loc) · 1.46 KB
/
key_split_ops.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
#pragma once
#include <c10/util/irange.h>
#include "caffe2/core/context.h"
#include "caffe2/core/operator.h"
#include "caffe2/utils/math.h"
#include <vector>
namespace caffe2 {
template <typename T, class Context>
class KeySplitOp : public Operator<Context> {
public:
USE_OPERATOR_CONTEXT_FUNCTIONS;
template <class... Args>
explicit KeySplitOp(Args&&... args)
: Operator<Context>(std::forward<Args>(args)...),
categorical_limit_(
this->template GetSingleArgument<int>("categorical_limit", 0)) {
CAFFE_ENFORCE_GT(categorical_limit_, 0);
}
bool RunOnDevice() override {
auto& keys = Input(0);
const auto N = keys.numel();
const T *const keys_data = keys.template data<T>();
std::vector<int> counts(categorical_limit_);
std::vector<int*> eids(categorical_limit_);
for (const auto k : c10::irange(categorical_limit_)) {
counts[k] = 0;
}
for (const auto i : c10::irange(N)) {
const auto k = keys_data[i];
CAFFE_ENFORCE_GT(categorical_limit_, k);
CAFFE_ENFORCE_GE(k, 0);
counts[k]++;
}
for (const auto k : c10::irange(categorical_limit_)) {
auto *const eid = Output(k, {counts[k]}, at::dtype<int>());
eids[k] = eid->template mutable_data<int>();
counts[k] = 0;
}
for (const auto i : c10::irange(N)) {
const auto k = keys_data[i];
eids[k][counts[k]++] = i;
}
return true;
}
private:
int categorical_limit_;
};
} // namespace caffe2