forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathlayer_norm_op.h
291 lines (260 loc) · 7.82 KB
/
layer_norm_op.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
#ifndef CAFFE2_OPERATORS_LAYER_NORM_OP_H_
#define CAFFE2_OPERATORS_LAYER_NORM_OP_H_
#include <array>
#include <vector>
#include "caffe2/core/context.h"
#include "caffe2/core/export_caffe2_op_to_c10.h"
#include "caffe2/core/operator.h"
#include "caffe2/core/types.h"
#include "caffe2/utils/math.h"
C10_DECLARE_EXPORT_CAFFE2_OP_TO_C10(LayerNorm)
namespace caffe2 {
template <class Context>
class LayerNormOp final : public Operator<Context> {
public:
USE_OPERATOR_CONTEXT_FUNCTIONS;
template <class... Args>
explicit LayerNormOp(Args&&... args)
: Operator<Context>(std::forward<Args>(args)...),
OP_SINGLE_ARG(int, "axis", axis_, 1),
OP_SINGLE_ARG(float, "epsilon", epsilon_, 1e-5f),
OP_SINGLE_ARG(bool, "elementwise_affine", elementwise_affine_, false) {}
bool RunOnDevice() override {
return DispatchHelper<TensorTypes<float, double>>::call(this, Input(0));
}
template <typename T>
bool DoRunWithType() {
const auto& X = Input(0);
auto* Y = Output(0);
CAFFE_ENFORCE_GE(X.dim(), 2, "LayerNorm requires input dim >= 2.");
const int canonical_axis = X.canonical_axis_index(axis_);
std::vector<int64_t> moments_dims(
X.sizes().cbegin(), X.sizes().cbegin() + canonical_axis);
moments_dims.push_back(1);
auto* mean = Output(1, moments_dims, at::dtype<T>());
auto* sigma = Output(2, moments_dims, at::dtype<T>());
const int M = X.size_to_dim(canonical_axis);
const int N = X.size_from_dim(canonical_axis);
Y->ResizeLike(X);
scale_.Resize(M);
bias_.Resize(M);
const T* X_data = X.template data<T>();
T* Y_data = Y->template mutable_data<T>();
T* mean_data = mean->template mutable_data<T>();
T* sigma_data = sigma->template mutable_data<T>();
T* scale_data = scale_.template mutable_data<T>();
T* bias_data = bias_.template mutable_data<T>();
if (M == 0) {
return true;
}
const std::array<int, 2> X_dims = {M, N};
const std::array<int, 2> Y_dims = {M, 1};
math::Moments<T, Context>(
2,
X_dims.data(),
Y_dims.data(),
X_data,
mean_data,
sigma_data,
&context_);
ComputeSigmaAndFusedParams<T>(
M, epsilon_, mean_data, sigma_data, sigma_data, scale_data, bias_data);
const T* gamma_data = nullptr;
const T* beta_data = nullptr;
if (elementwise_affine_) {
CAFFE_ENFORCE_EQ(InputSize(), 3);
const auto& gamma = Input(1);
const auto& beta = Input(2);
CAFFE_ENFORCE_EQ(gamma.numel(), N);
CAFFE_ENFORCE_EQ(beta.numel(), N);
gamma_data = gamma.template data<T>();
beta_data = beta.template data<T>();
}
LayerNormForward<T>(
M, N, X_data, scale_data, bias_data, gamma_data, beta_data, Y_data);
return true;
}
private:
template <typename T>
void ComputeSigmaAndFusedParams(
const int N,
const float eps,
const T* mean,
const T* var,
T* stddev,
T* scale,
T* bias);
template <typename T>
void LayerNormForward(
const int M,
const int N,
const T* X,
const T* scale,
const T* bias,
const T* gamma,
const T* beta,
T* Y);
const int axis_;
const float epsilon_;
const bool elementwise_affine_;
Tensor scale_{Context::GetDeviceType()};
Tensor bias_{Context::GetDeviceType()};
};
template <class Context>
class LayerNormGradientOp final : public Operator<Context> {
public:
USE_OPERATOR_CONTEXT_FUNCTIONS;
template <class... Args>
explicit LayerNormGradientOp(Args&&... args)
: Operator<Context>(std::forward<Args>(args)...),
OP_SINGLE_ARG(int, "axis", axis_, 1),
OP_SINGLE_ARG(bool, "elementwise_affine", elementwise_affine_, false) {}
bool RunOnDevice() override {
return DispatchHelper<TensorTypes<float>>::call(this, Input(0));
}
template <typename T>
bool DoRunWithType() {
const auto& dY = Input(0);
const auto& mean = Input(2);
const auto& sigma = Input(3);
const auto& X = Input(4);
const int canonical_axis = X.canonical_axis_index(axis_);
const int M = X.size_to_dim(canonical_axis);
const int N = X.size_from_dim(canonical_axis);
auto* dX = Output(0, X.sizes(), at::dtype<T>());
ReinitializeTensor(
&ds_, {M}, at::dtype<T>().device(Context::GetDeviceType()));
ReinitializeTensor(
&db_, {M}, at::dtype<T>().device(Context::GetDeviceType()));
ReinitializeTensor(
&rstd_, {M}, at::dtype<T>().device(Context::GetDeviceType()));
ReinitializeTensor(
&X_scale_, {M}, at::dtype<T>().device(Context::GetDeviceType()));
ReinitializeTensor(
&bias_, {M}, at::dtype<T>().device(Context::GetDeviceType()));
const T* dY_data = dY.template data<T>();
const T* X_data = X.template data<T>();
const T* mean_data = mean.template data<T>();
const T* sigma_data = sigma.template data<T>();
T* dX_data = dX->template mutable_data<T>();
T* ds_data = ds_.template mutable_data<T>();
T* db_data = db_.template mutable_data<T>();
T* rstd_data = rstd_.template mutable_data<T>();
T* X_scale_data = X_scale_.template mutable_data<T>();
T* bias_data = bias_.template mutable_data<T>();
const T* gamma_data = nullptr;
T* dgamma_data = nullptr;
T* dbeta_data = nullptr;
T* g_scale_data = nullptr;
if (elementwise_affine_) {
const auto& gamma = Input(5);
auto* dgamma = Output(1, gamma.sizes(), at::dtype<T>());
auto* dbeta = Output(2, gamma.sizes(), at::dtype<T>());
ReinitializeTensor(
&g_scale_, {M}, at::dtype<T>().device(Context::GetDeviceType()));
gamma_data = gamma.template data<T>();
dgamma_data = dgamma->template mutable_data<T>();
dbeta_data = dbeta->template mutable_data<T>();
g_scale_data = g_scale_.template mutable_data<T>();
}
if (M == 0) {
if (N > 0 && dgamma_data != nullptr) {
math::Set<T, Context>(N, T(0), dgamma_data, &context_);
}
if (N > 0 && dbeta_data != nullptr) {
math::Set<T, Context>(N, T(0), dbeta_data, &context_);
}
return true;
}
ComputeInternalGradients<T>(
M, N, dY_data, X_data, gamma_data, dX_data, ds_data, db_data);
ComputeFusedParams<T>(
M,
N,
mean_data,
sigma_data,
ds_data,
db_data,
rstd_data,
X_scale_data,
bias_data,
g_scale_data);
if (elementwise_affine_) {
GammaBetaBackward<T>(
M,
N,
dX_data,
dY_data,
rstd_data,
g_scale_data,
dgamma_data,
dbeta_data);
}
LayerNormBackward<T>(
M,
N,
dY_data,
X_data,
gamma_data,
rstd_data,
X_scale_data,
bias_data,
dX_data);
return true;
}
private:
template <typename T>
void ComputeInternalGradients(
const int M,
const int N,
const T* dY,
const T* X,
const T* gamma,
T* dYxX,
T* ds,
T* db);
template <typename T>
void ComputeFusedParams(
const int M,
const int N,
const T* mean,
const T* sigma,
const T* ds,
const T* db,
T* rstd,
T* X_scale,
T* bias,
T* g_scale);
template <typename T>
void LayerNormBackward(
const int M,
const int N,
const T* dY,
const T* X,
const T* gamma,
const T* dY_scale,
const T* X_scale,
const T* bias,
T* dX);
template <typename T>
void GammaBetaBackward(
const int M,
const int N,
const T* dYxX,
const T* dY,
const T* rstd,
const T* g_scale,
T* dgamma,
T* dbeta);
const int axis_;
const bool elementwise_affine_;
Tensor ds_;
Tensor db_;
Tensor rstd_;
Tensor X_scale_;
Tensor bias_;
Tensor g_scale_;
Tensor ones_;
};
} // namespace caffe2
#endif // CAFFE2_OPERATORS_LAYER_NORM_OP_H_