forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathlogit_op.cc
103 lines (84 loc) · 2.89 KB
/
logit_op.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
#include "caffe2/operators/logit_op.h"
#include <string>
#include <vector>
#include "caffe2/operators/elementwise_ops.h"
#include "caffe2/utils/eigen_utils.h"
#include "caffe2/operators/bucketize_op.h"
#include "caffe2/core/operator.h"
#include "caffe2/core/tensor.h"
namespace caffe2 {
template <>
template <typename T>
bool LogitFunctor<CPUContext>::
operator()(const int size, const T* X, T* Y, CPUContext* /* context */) const {
ConstEigenVectorMap<T> X_vec(X, size);
EigenVectorMap<T> Y_vec(Y, size);
Y_vec = X_vec.array().min(static_cast<T>(1.0f - eps_));
Y_vec = Y_vec.array().max(eps_);
Y_vec = (Y_vec.array() / (T(1) - Y_vec.array())).log();
return true;
}
template <>
bool LogitGradientOp<float, CPUContext>::RunOnDevice() {
const auto& X = Input(0);
const auto& dY = Input(1);
auto* dX = Output(0, X.sizes(), at::dtype<float>());
int channels = X.dim32(X.dim() - 1);
ConstEigenArrayMap<float> Xmat(
X.template data<float>(), channels, X.numel() / channels);
ConstEigenArrayMap<float> dYmat(
dY.template data<float>(), channels, X.numel() / channels);
EigenArrayMap<float> dXmat(
dX->template mutable_data<float>(), channels, X.numel() / channels);
dXmat = (Xmat < eps_ || Xmat > 1.0 - eps_)
.select(0, dYmat * ((1 - Xmat) * Xmat).inverse());
return true;
}
REGISTER_CPU_OPERATOR(
Logit,
UnaryElementwiseWithArgsOp<
TensorTypes<float>,
CPUContext,
LogitFunctor<CPUContext>>);
REGISTER_CPU_OPERATOR(LogitGradient, LogitGradientOp<float, CPUContext>);
OPERATOR_SCHEMA(Logit)
.NumInputs(1)
.NumOutputs(1)
.AllowInplace({{0, 0}})
.IdenticalTypeAndShape()
.SetDoc(R"DOC(
Elementwise logit transform: logit(x) = log(x / (1 - x)), where x is the
input data clampped in (eps, 1-eps).
)DOC")
.Arg("eps (optional)", "small positive epsilon value, the default is 1e-6.")
.Input(0, "X", "input float tensor")
.Output(0, "Y", "output float tensor");
OPERATOR_SCHEMA(LogitGradient)
.NumInputs(2)
.NumOutputs(1)
.Input(0, "X", "input float tensor")
.Input(1, "dY", "input float tensor")
.Output(0, "dX", "output float tensor")
.Arg("eps", "small positive epsilon value, the default is 1e-6.");
namespace {
class GetLogitGradient : public GradientMakerBase {
using GradientMakerBase::GradientMakerBase;
vector<OperatorDef> GetGradientDefs() override {
return vector<OperatorDef>{CreateOperatorDef(
"LogitGradient",
"",
std::vector<std::string>{I(0), GO(0)},
std::vector<std::string>{GI(0)})};
}
};
} // namespace
REGISTER_GRADIENT(Logit, GetLogitGradient);
} // namespace caffe2
using LogitOp = caffe2::UnaryElementwiseWithArgsOp<
caffe2::TensorTypes<float>,
caffe2::CPUContext,
caffe2::LogitFunctor<caffe2::CPUContext>>;
C10_EXPORT_CAFFE2_OP_TO_C10_CPU(
Logit,
"_caffe2::Logit(Tensor X, float eps = 1e-6)->Tensor Y",
LogitOp);