forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmap_ops.h
269 lines (225 loc) · 7.87 KB
/
map_ops.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
#ifndef CAFFE2_OPERATORS_MAP_OPS_H_
#define CAFFE2_OPERATORS_MAP_OPS_H_
#include "caffe2/core/blob_serialization.h"
#include "caffe2/core/context.h"
#include "caffe2/core/operator.h"
#include <c10/util/irange.h>
#include <algorithm>
#include <iterator>
#include <string>
#include <typeinfo>
#include <unordered_map>
#include <utility>
#include <vector>
namespace caffe2 {
template <typename T>
struct TypeNameTraits {
static constexpr const char* name = "unknown";
};
template <>
struct TypeNameTraits<int64_t> {
static constexpr const char* name = "int64_t";
};
template <>
struct TypeNameTraits<int32_t> {
static constexpr const char* name = "int32_t";
};
template <typename KEY_T, typename VALUE_T>
struct MapTypeTraits {
using MapType = std::unordered_map<KEY_T, VALUE_T>;
static string MapTypeName() {
return string("(std::unordered_map<") + TypeNameTraits<KEY_T>::name + ", " +
TypeNameTraits<VALUE_T>::name + ">)";
}
};
using MapType64To64 = MapTypeTraits<int64_t, int64_t>::MapType;
using MapType64To32 = MapTypeTraits<int64_t, int32_t>::MapType;
using MapType32To32 = MapTypeTraits<int32_t, int32_t>::MapType;
using MapType32To64 = MapTypeTraits<int32_t, int64_t>::MapType;
template <class Context>
class CreateMapOp final : public Operator<Context> {
public:
USE_OPERATOR_CONTEXT_FUNCTIONS;
template <class... Args>
explicit CreateMapOp(Args&&... args)
: Operator<Context>(std::forward<Args>(args)...) {}
~CreateMapOp() {}
bool RunOnDevice() override {
TensorProto::DataType key_dtype = static_cast<TensorProto::DataType>(
this->template GetSingleArgument<int>(
"key_dtype", TensorProto_DataType_INT32));
return DispatchHelper<TensorTypes<int32_t, int64_t>>::call(
this, DataTypeToTypeMeta(key_dtype));
}
template <typename KEY_T>
bool DoRunWithType() {
TensorProto::DataType value_dtype = static_cast<TensorProto::DataType>(
this->template GetSingleArgument<int>(
"value_dtype", TensorProto_DataType_INT32));
return DispatchHelper<
TensorTypes2<int32_t, int64_t, GenericTensorImplementation>,
KEY_T>::call(this, DataTypeToTypeMeta(value_dtype));
}
template <typename KEY_T, typename VALUE_T>
bool DoRunWithType2() {
// clear to make sure the map is empty
this->template Output<typename MapTypeTraits<KEY_T, VALUE_T>::MapType>(MAP)
->clear();
return true;
}
template <typename KEY_T>
bool DoRunWithOtherType2() {
TensorProto::DataType value_dtype = static_cast<TensorProto::DataType>(
this->template GetSingleArgument<int>(
"value_dtype", TensorProto_DataType_INT32));
CAFFE_THROW(
"CreateMap is not implemented on value tensor of type ",
DataTypeToTypeMeta(value_dtype).name(),
"consider adding it as a type in the DispatchHelper list");
}
OUTPUT_TAGS(MAP);
};
template <class Context>
class KeyValueToMapOp final : public Operator<Context> {
public:
USE_OPERATOR_CONTEXT_FUNCTIONS;
template <class... Args>
explicit KeyValueToMapOp(Args&&... args)
: Operator<Context>(std::forward<Args>(args)...) {}
~KeyValueToMapOp() {}
bool RunOnDevice() override {
return DispatchHelper<TensorTypes<int32_t, int64_t>>::call(
this, Input(KEYS));
}
template <typename KEY_T>
bool DoRunWithType() {
return DispatchHelper<
TensorTypes2<int32_t, int64_t, GenericTensorImplementation>,
KEY_T>::call(this, Input(VALUES));
}
template <typename KEY_T, typename VALUE_T>
bool DoRunWithType2() {
using MapType = typename MapTypeTraits<KEY_T, VALUE_T>::MapType;
const auto& key_input = Input(KEYS);
const auto& value_input = Input(VALUES);
CAFFE_ENFORCE_EQ(key_input.numel(), value_input.numel());
auto* key_data = key_input.template data<KEY_T>();
auto* value_data = value_input.template data<VALUE_T>();
auto* map_data = this->template Output<MapType>(MAP);
for (const auto i : c10::irange(key_input.numel())) {
map_data->emplace(key_data[i], value_data[i]);
}
return true;
}
template <typename KEY_T>
bool DoRunWithOtherType2() {
CAFFE_THROW(
"KeyValueToMap is not implemented on value tensor of type ",
Input(VALUES).dtype().name(),
"consider adding it as a type in the DispatchHelper list");
}
INPUT_TAGS(KEYS, VALUES);
OUTPUT_TAGS(MAP);
};
template <class Context>
class MapToKeyValueOp final : public Operator<Context> {
public:
USE_OPERATOR_CONTEXT_FUNCTIONS;
template <class... Args>
explicit MapToKeyValueOp(Args&&... args)
: Operator<Context>(std::forward<Args>(args)...) {}
~MapToKeyValueOp() {}
bool RunOnDevice() override {
return DispatchHelper<TensorTypes<
MapType64To64,
MapType64To32,
MapType32To32,
MapType32To64>>::call(this, OperatorBase::InputBlob(MAP));
}
template <typename MAP_T>
bool DoRunWithType() {
using key_type = typename MAP_T::key_type;
using mapped_type = typename MAP_T::mapped_type;
auto& map_data = this->template Input<MAP_T>(MAP);
auto* key_output = Output(
KEYS, {static_cast<int64_t>(map_data.size())}, at::dtype<key_type>());
auto* value_output = Output(
VALUES,
{static_cast<int64_t>(map_data.size())},
at::dtype<mapped_type>());
auto* key_data = key_output->template mutable_data<key_type>();
auto* value_data = value_output->template mutable_data<mapped_type>();
for (const auto& it : map_data) {
*key_data = it.first;
*value_data = it.second;
key_data++;
value_data++;
}
return true;
}
INPUT_TAGS(MAP);
OUTPUT_TAGS(KEYS, VALUES);
};
template <typename KEY_T, typename VALUE_T>
class MapSerializer : public BlobSerializerBase {
public:
using MapType = typename MapTypeTraits<KEY_T, VALUE_T>::MapType;
void Serialize(
const void* pointer,
TypeMeta typeMeta,
const string& name,
BlobSerializerBase::SerializationAcceptor acceptor) override {
CAFFE_ENFORCE(typeMeta.Match<MapType>());
const MapType& map_data = *static_cast<const MapType*>(pointer);
int64_t sz = map_data.size();
Tensor key_tensor(CPU);
key_tensor.Resize(sz);
Tensor value_tensor(CPU);
value_tensor.Resize(sz);
auto* key_data = key_tensor.mutable_data<KEY_T>();
auto* value_data = value_tensor.mutable_data<VALUE_T>();
for (const auto& it : map_data) {
*key_data = it.first;
*value_data = it.second;
key_data++;
value_data++;
}
TensorProtos tensor_protos;
TensorSerializer ser;
ser.Serialize(
key_tensor, name, tensor_protos.add_protos(), 0, key_tensor.numel());
ser.Serialize(
value_tensor,
name,
tensor_protos.add_protos(),
0,
value_tensor.numel());
BlobProto blob_proto;
blob_proto.set_name(name);
blob_proto.set_type(MapTypeTraits<KEY_T, VALUE_T>::MapTypeName());
blob_proto.set_content(SerializeAsString_EnforceCheck(tensor_protos));
acceptor(name, SerializeBlobProtoAsString_EnforceCheck(blob_proto));
}
};
template <typename KEY_T, typename VALUE_T>
class MapDeserializer : public BlobDeserializerBase {
public:
using MapType = typename MapTypeTraits<KEY_T, VALUE_T>::MapType;
void Deserialize(const BlobProto& proto, Blob* blob) override {
TensorProtos tensor_protos;
CAFFE_ENFORCE(
tensor_protos.ParseFromString(proto.content()),
"Fail to parse TensorProtos");
TensorDeserializer deser;
Tensor key_tensor = deser.Deserialize(tensor_protos.protos(0));
Tensor value_tensor = deser.Deserialize(tensor_protos.protos(1));
auto* key_data = key_tensor.data<KEY_T>();
auto* value_data = value_tensor.data<VALUE_T>();
auto* map_ptr = blob->template GetMutable<MapType>();
for (const auto i : c10::irange(key_tensor.numel())) {
map_ptr->emplace(key_data[i], value_data[i]);
}
}
};
} // namespace caffe2
#endif // CAFFE2_OPERATORS_MAP_OPS_H_