forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmargin_loss_l2r_op.cc
163 lines (134 loc) · 5.5 KB
/
margin_loss_l2r_op.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
#include "caffe2/operators/margin_loss_l2r_op.h"
#include <cmath>
#include "caffe2/core/context.h"
#include "caffe2/core/operator.h"
#include "caffe2/utils/eigen_utils.h"
namespace caffe2 {
namespace {
#define PAIRWISE_DIFF(vec, N) \
((vec.matrix() * Eigen::MatrixXf::Ones(1, N) - \
Eigen::MatrixXf::Ones(N, 1) * vec.matrix().transpose()) \
.array())
#define CWISE_GT(vec1, vec2) ((vec1) > (vec2))
#define CWISE_LT(vec1, vec2) ((vec1) < (vec2))
#define CWISE_SIGN(vec) \
CWISE_GT((vec), 0).cast<float>() - CWISE_LT((vec), 0).cast<float>()
} // namespace
template <>
float SessionMarginLossOp<float, CPUContext>::SessionMarginLoss(
int start_index,
int end_index,
const Tensor& pred,
const Tensor& label,
Tensor** dpred) {
CAFFE_ENFORCE_LE(0.0, start_index);
CAFFE_ENFORCE_GE(pred.numel(), start_index);
const auto* pred_data = pred.template data<float>();
const auto* label_data = label.template data<float>();
int N = end_index - start_index + 1;
ConstEigenVectorArrayMap<float> pred_vec(&pred_data[start_index], N);
ConstEigenVectorArrayMap<float> label_vec(&label_data[start_index], N);
auto* dpred_data = (*dpred)->template mutable_data<float>();
EigenVectorArrayMap<float> dpred_vec(&dpred_data[start_index], N);
dpred_vec = 0;
ReinitializeTensor(&margin_diff_, {N * N}, at::dtype<float>().device(CPU));
auto* margin_diff_data = margin_diff_.template mutable_data<float>();
EigenArrayMap<float> margin_diff_mat(margin_diff_data, N, N);
ReinitializeTensor(
&label_relation_sign_, {N * N}, at::dtype<float>().device(CPU));
auto* label_relation_sign_data =
label_relation_sign_.template mutable_data<float>();
EigenArrayMap<float> label_relation_sign_mat(label_relation_sign_data, N, N);
// in case that all docs in a session have zero ratings, no op
if (label_vec.abs().sum() < 1e-6) {
return 0;
}
if (N <= 0) {
return 0;
}
float weight = 1.0f / N;
// define label relation, return N * N MATRIX, element (i, j) will be sign(label_i - label_i)
label_relation_sign_mat = PAIRWISE_DIFF(label_vec, N).cwiseSign();
margin_diff_mat =
(margin_ - (label_relation_sign_mat * PAIRWISE_DIFF(pred_vec, N))) *
label_relation_sign_mat.abs();
float loss = 0.5f * weight *
(margin_diff_mat * CWISE_GT(margin_diff_mat, 0).cast<float>()).sum();
dpred_vec = -weight *
((CWISE_GT(margin_diff_mat, 0).cast<float>()) * label_relation_sign_mat)
.rowwise()
.sum();
return loss;
}
template <>
bool SessionMarginLossOp<float, CPUContext>::RunOnDevice() {
auto& pred = Input(PRED);
auto& label = Input(LABEL);
auto& sid = Input(SESSION_LENS);
auto* dpred = Output(DPRED);
const auto* session_lengths = sid.template data<int>();
CAFFE_ENFORCE(pred.dim() == 1);
CAFFE_ENFORCE(pred.numel() == label.numel());
dpred->Resize(pred.numel());
auto* loss = Output(LOSS, {sid.numel()}, at::dtype<float>());
auto loss_vec = loss->template mutable_data<float>();
int start_id = 0;
for (int i = 0; i < sid.numel(); i++) {
loss_vec[i] = SessionMarginLoss(
start_id, session_lengths[i] + start_id - 1, pred, label, &dpred);
start_id += session_lengths[i];
}
return true;
}
template <>
bool SessionMarginLossGradientOp<float, CPUContext>::RunOnDevice() {
auto& pred = Input(PRED);
auto& sids = Input(SESSION_LENS);
auto& precomputed_dpred = Input(PRECOMPUTED_DPRED);
auto& dLoss = Input(DLOSS);
CAFFE_ENFORCE(pred.dim() == 1);
CAFFE_ENFORCE(precomputed_dpred.dim() == 1);
CAFFE_ENFORCE(precomputed_dpred.numel() > 0);
CAFFE_ENFORCE(pred.numel() == precomputed_dpred.numel());
const auto* session_lengths = sids.template data<int>();
CAFFE_ENFORCE(dLoss.numel() == sids.numel());
ConstEigenVectorArrayMap<float> precomputed_dpred_vec(
precomputed_dpred.template data<float>(), precomputed_dpred.numel());
auto* dpred = Output(DPRED, {precomputed_dpred.numel()}, at::dtype<float>());
EigenVectorArrayMap<float> dpred_vec(
dpred->template mutable_data<float>(), dpred->numel());
auto multiplier = dLoss.template data<float>();
int count = 0;
for (int j = 0; j < sids.numel(); j++) {
dpred_vec.segment(count, session_lengths[j]) = multiplier[j] *
precomputed_dpred_vec.segment(count, session_lengths[j]);
count += session_lengths[j];
}
return true;
}
namespace {
REGISTER_CPU_OPERATOR(
SessionMarginLoss,
SessionMarginLossOp<float, CPUContext>);
REGISTER_CPU_OPERATOR(
SessionMarginLossGradient,
SessionMarginLossGradientOp<float, CPUContext>);
OPERATOR_SCHEMA(SessionMarginLoss).NumInputs(3).NumOutputs(2).SetDoc(R"DOC(
This method optimizes the pairwise margin loss in a session with margin control.
If multiple sessions are in a batch, pairwise loss will only be computed in a session and the total loss will be the sum of pairwise loss from each session.
The exact loss function in a session is similar to https://pytorch.org/docs/stable/generated/torch.nn.MarginRankingLoss.html#torch.nn.MarginRankingLoss
)DOC");
OPERATOR_SCHEMA(SessionMarginLossGradient).NumInputs(4).NumOutputs(1);
class GetSessionMarginLossGradient : public GradientMakerBase {
using GradientMakerBase::GradientMakerBase;
vector<OperatorDef> GetGradientDefs() override {
return SingleGradientDef(
"SessionMarginLossGradient",
"",
vector<string>{I(0), I(2), O(1), GO(0)},
vector<string>{GI(0)});
}
};
REGISTER_GRADIENT(SessionMarginLoss, GetSessionMarginLossGradient);
} // namespace
} // namespace caffe2