forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmax_pool_with_index.cu
257 lines (230 loc) · 7.57 KB
/
max_pool_with_index.cu
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
#include "caffe2/operators/max_pool_with_index_gpu.h"
#include "caffe2/utils/conversions.h"
namespace caffe2 {
namespace {
/***
* Note: CUDA kernels are minor changes from those at:
* https://github.com/BVLC/caffe/blob/master/src/caffe/layers/pooling_layer.cu
* Originally licensed under BSD
**/
template <typename Dtype>
__global__ void MaxPoolForward(
const int nthreads,
const Dtype *const bottom_data,
const int channels,
const int height,
const int width,
const int pooled_height,
const int pooled_width,
const int kernel_h,
const int kernel_w,
const int stride_h,
const int stride_w,
const int pad_h,
const int pad_w,
Dtype *const top_data,
int *const mask) {
CUDA_1D_KERNEL_LOOP(index, nthreads) {
const int pw = index % pooled_width;
const int ph = (index / pooled_width) % pooled_height;
const int c = (index / pooled_width / pooled_height) % channels;
const int n = index / pooled_width / pooled_height / channels;
int hstart = ph * stride_h - pad_h;
int wstart = pw * stride_w - pad_w;
const int hend = min(hstart + kernel_h, height);
const int wend = min(wstart + kernel_w, width);
hstart = max(hstart, 0);
wstart = max(wstart, 0);
float maxval = -FLT_MAX;
int maxidx = -1;
const Dtype* const bottom_slice =
bottom_data + (n * channels + c) * height * width;
for (int h = hstart; h < hend; ++h) {
for (int w = wstart; w < wend; ++w) {
if (convert::To<Dtype, float>(bottom_slice[h * width + w]) > maxval) {
maxidx = h * width + w;
maxval = convert::To<Dtype, float>(bottom_slice[maxidx]);
}
}
}
top_data[index] = convert::To<float, Dtype>(maxval);
mask[index] = maxidx;
}
}
template <typename Dtype>
__global__ void MaxPoolBackward(
const int nthreads,
const Dtype *const top_diff,
const int *const mask,
const int channels,
const int height,
const int width,
const int pooled_height,
const int pooled_width,
const int kernel_h,
const int kernel_w,
const int stride_h,
const int stride_w,
const int pad_h,
const int pad_w,
Dtype *const bottom_diff) {
CUDA_1D_KERNEL_LOOP(index, nthreads) {
// find out the local index
// find out the local offset
const int w = index % width;
const int h = (index / width) % height;
const int c = (index / width / height) % channels;
const int n = index / width / height / channels;
const int phstart =
(h + pad_h < kernel_h) ? 0 : (h + pad_h - kernel_h) / stride_h + 1;
const int phend = min((h + pad_h) / stride_h + 1, pooled_height);
const int pwstart =
(w + pad_w < kernel_w) ? 0 : (w + pad_w - kernel_w) / stride_w + 1;
const int pwend = min((w + pad_w) / stride_w + 1, pooled_width);
float gradient = 0;
const int offset = (n * channels + c) * pooled_height * pooled_width;
const Dtype* const top_diff_slice = top_diff + offset;
const int* const mask_slice = mask + offset;
for (int ph = phstart; ph < phend; ++ph) {
for (int pw = pwstart; pw < pwend; ++pw) {
if (mask_slice[ph * pooled_width + pw] == h * width + w) {
gradient +=
convert::To<Dtype, float>(top_diff_slice[ph * pooled_width + pw]);
}
}
}
bottom_diff[index] = convert::To<float, Dtype>(gradient);
}
}
};
template <typename T>
bool MaxPoolWithIndexOp::DoRunWithType() {
auto& X = Input(0);
auto sizes = ConvPoolOpBase<CUDAContext>::GetOutputSize(X, X.dim32(1));
auto* Y = Output(0, sizes, at::dtype<T>());
int output_size = Y->numel();
auto* mask = Output(1, {output_size}, at::dtype<int>());
MaxPoolForward<T>
<<<CAFFE_GET_BLOCKS(output_size),
CAFFE_CUDA_NUM_THREADS,
0,
context_.cuda_stream()>>>(
output_size,
X.data<T>(),
X.dim32(1),
X.dim32(2),
X.dim32(3),
Y->dim32(2),
Y->dim32(3),
kernel_h(),
kernel_w(),
stride_h(),
stride_w(),
pad_t(),
pad_l(),
Y->template mutable_data<T>(),
mask->template mutable_data<int>());
C10_CUDA_KERNEL_LAUNCH_CHECK();
return true;
}
bool MaxPoolWithIndexOp::RunOnDevice() {
auto& X = Input(0);
CAFFE_ENFORCE(X.dim() == 4, "Operator only supports 4D tensors");
if (X.IsType<float>()) {
return DoRunWithType<float>();
} else if (X.IsType<at::Half>()) {
return DoRunWithType<at::Half>();
} else {
CAFFE_THROW("Unsupported input type");
}
}
template <typename T>
bool MaxPoolWithIndexGradientOp::DoRunWithType() {
auto& X = Input(0);
auto& dY = Input(1);
auto& mask = Input(2);
CAFFE_ENFORCE(X.dim() == 4, "Operator only supports 4D tensors");
auto* dX = Output(0, X.sizes(), at::dtype<T>());
ConvPoolOpBase<CUDAContext>::ComputePads(vector<int>{X.dim32(2), X.dim32(3)});
MaxPoolBackward<T><<<
CAFFE_GET_BLOCKS(X.numel()),
CAFFE_CUDA_NUM_THREADS,
0,
context_.cuda_stream()>>>(
X.numel(),
dY.data<T>(),
mask.data<int>(),
X.dim32(1),
X.dim32(2),
X.dim32(3),
dY.dim32(2),
dY.dim32(3),
kernel_h(),
kernel_w(),
stride_h(),
stride_w(),
pad_t(),
pad_l(),
dX->template mutable_data<T>());
C10_CUDA_KERNEL_LAUNCH_CHECK();
return true;
}
bool MaxPoolWithIndexGradientOp::RunOnDevice() {
auto& X = Input(0);
if (X.IsType<float>()) {
return DoRunWithType<float>();
} else if (X.IsType<at::Half>()) {
return DoRunWithType<at::Half>();
} else {
CAFFE_THROW("Unsupported input type");
}
}
namespace {
REGISTER_CUDA_OPERATOR(MaxPoolWithIndex, MaxPoolWithIndexOp);
REGISTER_CUDA_OPERATOR(MaxPoolWithIndexGradient, MaxPoolWithIndexGradientOp);
class GetMaxPoolWithIndexGradient : public GradientMakerBase {
using GradientMakerBase::GradientMakerBase;
vector<OperatorDef> GetGradientDefs() override {
return SingleGradientDef(
"MaxPoolWithIndexGradient",
"",
vector<string>{I(0), GO(0), O(1)},
vector<string>{GI(0)});
}
};
REGISTER_GRADIENT(MaxPoolWithIndex, GetMaxPoolWithIndexGradient);
OPERATOR_SCHEMA(MaxPoolWithIndexGradient);
OPERATOR_SCHEMA(MaxPoolWithIndex)
.NumInputs(1)
.NumOutputs(2)
.TensorInferenceFunction(ConvPoolOpBase<CPUContext>::TensorInferenceForPool)
.SetDoc(R"DOC(
MaxPoolWithIndex consumes an input blob X and applies max pooling across the
blob according to kernel sizes, stride sizes and pad lengths defined by the
ConvPoolOpBase operator. It also produces an explicit mask that defines the
location that all maximum values were found, which is re-used in the
gradient pass. This op is deterministic.
)DOC")
.Input(
0,
"X",
"Input data tensor from the previous operator; dimensions "
"depend on whether the NCHW or NHWC operators are being used. For "
"example, in the former, the input has size (N x C x H x W), where N is"
" the batch size, C is the number of channels, and H and W are the "
"height and the width of the data. The corresponding permutation of "
"dimensions is used in the latter case. ")
.Output(
0,
"Y",
"Output data tensor from average pooling across the input "
"tensor. Dimensions will vary based on various kernel, stride, and pad "
"sizes.")
.Output(
1,
"Index",
"Mask of location indices of the found maximum values, "
" used in the gradient operator to accumulate dY values to the "
"appropriate locations in Y");
};
}; // namespace caffe2