forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmean_op.h
130 lines (108 loc) · 3.24 KB
/
mean_op.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
#ifndef CAFFE2_OPERATORS_MEAN_OPS_H_
#define CAFFE2_OPERATORS_MEAN_OPS_H_
#include "caffe2/core/common_omp.h"
#include "caffe2/core/context.h"
#include "caffe2/core/logging.h"
#include "caffe2/core/operator.h"
#include "caffe2/core/types.h"
#include "caffe2/utils/math.h"
#include "caffe2/utils/proto_utils.h"
#include "c10/util/irange.h"
namespace caffe2 {
template <class Context>
class MeanOp final : public Operator<Context> {
public:
USE_OPERATOR_CONTEXT_FUNCTIONS;
USE_SIMPLE_CTOR_DTOR(MeanOp)
template <typename T>
bool DoRunWithType() {
auto& input0 = Input(0);
auto* output = Output(0, input0.sizes(), at::dtype<T>());
output->CopyFrom(input0, true /*async*/);
if (InputSize() == 1) {
return true;
}
// Dimension checking
for (const auto i : c10::irange(1, InputSize())) {
if (output->sizes() != Input(i).sizes()) {
CAFFE_THROW(
"Check failed: output->sizes() == Input(i).sizes().",
"Description: Input #",
i,
", input dimension:",
Input(i).sizes(),
" should match output dimension: ",
output->sizes());
}
}
T* output_data = output->template mutable_data<T>();
for (const auto i : c10::irange(1, InputSize())) {
math::Add(
output->numel(),
output_data,
Input(i).template data<T>(),
output_data,
&context_);
}
math::Scale(
output->numel(),
1.0f / InputSize(),
output_data,
output_data,
&context_);
return true;
}
bool RunOnDevice() override {
if (Input(0).template IsType<float>()) {
return DoRunWithType<float>();
} else if (Input(0).template IsType<double>()) {
return DoRunWithType<double>();
} else {
CAFFE_THROW(
"Mean operator only supports 32-bit float or 64-bit double, but",
" input was of type ",
Input(0).dtype().name());
}
}
};
template <class Context>
class MeanGradientOp : public Operator<Context> {
public:
USE_OPERATOR_CONTEXT_FUNCTIONS;
template <class... Args>
explicit MeanGradientOp(Args&&... args)
: Operator<Context>(std::forward<Args>(args)...) {}
template <typename T>
bool DoRunWithType() {
auto& dY = Input(0);
const auto* dY_data = dY.template data<T>();
int size = dY.numel();
int num_inputs = OutputSize();
float scale = 1.0f / num_inputs;
// dX0 = scale * dY
auto* dX0 = Output(0, dY.sizes(), at::dtype<T>());
math::Scale(
size, scale, dY_data, dX0->template mutable_data<T>(), &context_);
// Copy the rest dX
for (const auto i : c10::irange(1, num_inputs)) {
auto* cur_dX = Output(i);
cur_dX->ResizeLike(dY);
cur_dX->CopyFrom(*dX0, true /*async*/);
}
return true;
}
bool RunOnDevice() override {
if (Input(0).template IsType<float>()) {
return DoRunWithType<float>();
} else if (Input(0).template IsType<double>()) {
return DoRunWithType<double>();
} else {
CAFFE_THROW(
"Mean operator only supports 32-bit float or 64-bit double, but",
" input was of type ",
Input(0).dtype().name());
}
}
};
} // namespace caffe2
#endif // CAFFE2_OPERATORS_MEAN_OPS_H_