forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathonnx_while_op.h
318 lines (273 loc) · 10.5 KB
/
onnx_while_op.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
#ifndef CAFFE2_OPERATORS_ONNX_WHILE_OP_H_
#define CAFFE2_OPERATORS_ONNX_WHILE_OP_H_
#include "caffe2/core/context.h"
#include "caffe2/core/logging.h"
#include "caffe2/core/operator.h"
#include "caffe2/operators/create_scope_op.h"
#include "c10/util/irange.h"
namespace caffe2 {
template <class Context>
class ONNXWhileOp final : public Operator<Context> {
public:
explicit ONNXWhileOp(const OperatorDef& operator_def, Workspace* ws)
: Operator<Context>(operator_def, ws),
parent_ws_(ws),
has_trip_count_(
this->template GetSingleArgument<int64_t>("has_trip_count", 0)),
has_cond_(this->template GetSingleArgument<int64_t>("has_cond", 0)),
save_scopes_(
this->template GetSingleArgument<int64_t>("save_scopes", 0)),
disable_scopes_(
this->template GetSingleArgument<int64_t>("disable_scopes", 0)),
num_loop_carried_deps_(this->template GetSingleArgument<int64_t>(
"num_loop_carried_deps",
-1)) {
CAFFE_ENFORCE(
this->template HasSingleArgumentOfType<NetDef>("body"),
"body net must be specified in ONNXWhile operator");
if (disable_scopes_) {
CAFFE_ENFORCE(
!save_scopes_, "Cannot save scopes when disable_scopes=True");
}
body_net_def_ = this->template GetSingleArgument<NetDef>("body", NetDef());
static int64_t counter = -1;
if (!body_net_def_.has_name()) {
if (counter == -1) {
++counter;
body_net_def_.set_name("loop_net");
} else {
++counter;
body_net_def_.set_name("loop_net." + c10::to_string(counter));
}
}
}
USE_OPERATOR_CONTEXT_FUNCTIONS;
bool RunOnDevice() {
return DispatchHelper<TensorTypes<int, bool, long>>::call(this, Input(1));
}
// Operator
// Inputs: max trip count, condition, initial loop-carried dependencies
// Outputs: Final loop-carried dependencies, scan_outputs
// Body
// Inputs: iteration number, condition, loop-carried dependencies
// Outputs: condition, loop-carried dependencies, scan_outputs
template <typename CondVarType>
bool DoRunWithType() {
// Clear workspaces from the previous invocations of the loop
// and setup a local scope for the first iteration
ws_stack_.clear();
auto loop_ws = !disable_scopes_
? ws_stack_.pushForwardWorkspace(parent_ws_).get()
: parent_ws_;
constexpr int64_t num_inputs_before_lcds = 2;
// First input is the maximumt trip count. Second input is the condition
// variable (for the first iteration). The rest of the inputs are
// loop-carried dependencies.
int64_t num_loop_carried_deps;
if (num_loop_carried_deps_ != -1) {
num_loop_carried_deps = num_loop_carried_deps_;
} else {
num_loop_carried_deps = InputSize() - num_inputs_before_lcds;
}
int64_t max_trip_count = *Input(0).template data<int64_t>();
const bool first_iter_condition = *Input(1).template data<CondVarType>();
scope_ = std::make_shared<LocalScope>(
loop_ws, body_net_def_, num_loop_carried_deps);
// Body graph has 1+N+K outputs: recalculated condition variable, N
// loop-carried dependencies, and K scan_outputs
int num_scan_outputs =
scope_->net()->external_output().size() - num_loop_carried_deps - 1;
CAFFE_ENFORCE_GE(
num_scan_outputs,
0,
"Body graph must have N+K outputs, where N is the number "
"of loop-carried dependencies and K is the number of scan "
"outputs");
// Copy initial loop-carried dependencies
for (const auto i : c10::irange(num_loop_carried_deps)) {
scope_->lcd_tensor(i)->CopyFrom(Input(i + num_inputs_before_lcds));
}
// Initialize iteration variable
scope_->set_iteration(0ll);
// Initialize input condition variable
scope_->template set_input_condition<CondVarType>(first_iter_condition);
auto valid_iter_num = [this, max_trip_count](int64_t i) {
if (has_trip_count_) {
return i < max_trip_count;
} else {
return true;
}
};
auto condition_true = [this, first_iter_condition](
int64_t i, bool cond_value) {
if (has_cond_) {
if (i == 0) {
return (bool)first_iter_condition;
} else {
return cond_value;
}
} else {
return true;
}
};
// Allocate scan_outputs for zero-iteration case
for (const auto i : c10::irange(num_scan_outputs)) {
Output(i + num_loop_carried_deps)->Resize(0);
Output(i + num_loop_carried_deps)->template mutable_data<int32_t>();
}
// Use this to keep track of the sizes of the scan outputs and validate
// they're the same across iterations.
std::vector<std::vector<int64_t>> scan_outputs_sizes;
Workspace* cur_ws = nullptr;
bool cur_output_condition = false;
while (true) {
int64_t itr = scope_->iteration();
if (valid_iter_num(itr) && condition_true(itr, cur_output_condition)) {
if (!scope_->net()->Run()) {
return false;
}
cur_ws = scope_->workspace();
cur_output_condition = scope_->template output_condition<CondVarType>();
if (save_scopes_) {
loop_ws = ws_stack_.pushForwardWorkspace(parent_ws_).get();
scope_ = std::make_shared<LocalScope>(
loop_ws, body_net_def_, num_loop_carried_deps);
}
// Copy forward loop-carried dependencies
for (const auto i : c10::irange(num_loop_carried_deps)) {
Blob* b = cur_ws->GetBlob(scope_->net()->external_output()[i + 1]);
const Tensor& t = b->template Get<Tensor>();
scope_->lcd_tensor(i)->CopyFrom(t);
}
// Copy out scan_outputs
for (const auto i : c10::irange(num_scan_outputs)) {
int net_output_idx = i + 1 + num_loop_carried_deps;
const Tensor& scan_output =
cur_ws->GetBlob(scope_->net()->external_output()[net_output_idx])
->template Get<Tensor>();
auto* scan_output_target = Output(i + num_loop_carried_deps);
if (itr == 0) {
auto dims = scan_output.sizes().vec();
scan_outputs_sizes.push_back(dims);
dims.insert(dims.begin(), 1);
scan_output_target->Resize(dims);
scan_output_target->CopyFrom(scan_output);
} else {
auto dims = scan_output.sizes().vec();
CAFFE_ENFORCE_EQ(
dims,
scan_outputs_sizes[i],
"Size of scan output changed across iterations");
dims.insert(dims.begin(), itr);
scan_output_target->Extend(1, 100);
int64_t timestep_size = 1;
for (const int64_t t : scan_outputs_sizes[i]) {
timestep_size *= t;
}
const void* src_data = scan_output.raw_data();
auto& sot_meta = scan_output_target->dtype();
void* dst_data =
(char*)scan_output_target->raw_mutable_data(sot_meta) +
timestep_size * scan_output.itemsize() * itr;
memcpy(dst_data, src_data, timestep_size * scan_output.itemsize());
}
}
scope_->set_iteration(itr + 1ll);
scope_->template set_input_condition<CondVarType>(cur_output_condition);
} else {
break;
}
}
// Copy out final loop-carried dependencies
for (const auto i : c10::irange(num_loop_carried_deps)) {
Output(i)->CopyFrom(*scope_->lcd_tensor(i));
}
return true;
}
private:
class LocalScope {
public:
LocalScope(Workspace* loop_ws, const NetDef& body_net_def, size_t num_lcds)
: loop_ws_(loop_ws) {
CAFFE_ENFORCE(loop_ws_, "Failed to initialize local loop workspace");
// Create loop-carried deps in Workspace
lcd_tensors_.clear();
// NOLINTNEXTLINE(clang-diagnostic-sign-compare)
for (int i = 2; i < num_lcds + 2; ++i) {
Blob* b = loop_ws_->CreateBlob(body_net_def.external_input(i));
Tensor* t = BlobGetMutableTensor(b, Context::GetDeviceType());
lcd_tensors_.push_back(t);
}
// First output is the iteration variable
auto* iteration_var_blob =
loop_ws_->CreateBlob(body_net_def.external_input(0));
iteration_var_ =
BlobGetMutableTensor(iteration_var_blob, Context::GetDeviceType());
input_condition_var_ = BlobGetMutableTensor(
loop_ws_->CreateBlob(body_net_def.external_input(1)),
Context::GetDeviceType());
auto* condition_var_blob =
loop_ws_->CreateBlob(body_net_def.external_output(0));
condition_var_ =
BlobGetMutableTensor(condition_var_blob, Context::GetDeviceType());
condition_var_->Resize(1);
condition_var_->template mutable_data<bool>();
body_net_ = loop_ws_->GetNet(body_net_def.name());
if (!body_net_) {
body_net_ = loop_ws_->CreateNet(body_net_def, true);
}
CAFFE_ENFORCE(body_net_, "Failed to initialize loop subnet");
}
NetBase* net() const {
return body_net_;
}
Workspace* workspace() const {
return loop_ws_;
}
int64_t iteration() const {
auto* iteration_var_ptr =
iteration_var_->template mutable_data<int64_t>();
return *iteration_var_ptr;
}
Tensor* lcd_tensor(int idx) {
return lcd_tensors_[idx];
}
void set_iteration(int64_t itr) {
iteration_var_->Resize();
auto* iteration_var_ptr =
iteration_var_->template mutable_data<int64_t>();
*iteration_var_ptr = itr;
}
template <typename CondVarType>
void set_input_condition(bool cond_value) {
input_condition_var_->Resize(1);
auto* input_condition_var_ptr =
input_condition_var_->template mutable_data<CondVarType>();
*input_condition_var_ptr = cond_value;
}
template <typename CondVarType>
bool output_condition() const {
auto* condition_var_ptr =
condition_var_->template mutable_data<CondVarType>();
return *condition_var_ptr;
}
private:
Workspace* loop_ws_;
NetBase* body_net_; // owned by a workspace
Tensor* iteration_var_;
Tensor* input_condition_var_;
Tensor* condition_var_;
std::vector<Tensor*> lcd_tensors_;
};
NetDef body_net_def_;
Workspace* parent_ws_;
detail::WorkspaceStack ws_stack_;
bool has_trip_count_;
bool has_cond_;
bool save_scopes_;
bool disable_scopes_;
int64_t num_loop_carried_deps_;
std::shared_ptr<LocalScope> scope_;
};
} // namespace caffe2
#endif // CAFFE2_OPERATORS_ONNX_WHILE_OP_H