forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathpool_op_util.cc
361 lines (331 loc) · 11 KB
/
pool_op_util.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
#include "caffe2/operators/pool_op_util.h"
#include "caffe2/utils/eigen_utils.h"
namespace caffe2 {
namespace pool_op_util {
namespace {
#if defined(__ARM_NEON__) || defined(__ARM_NEON)
// Vectorizes 4x4p0s0 average pooling for ARM NEON
void AvgPoolNeon4x4p0s0Plane(
int inputH,
int inputW,
const float* input,
float* output) {
constexpr int kKernelHeight = 4;
constexpr int kKernelWidth = 4;
constexpr float kDiv = (1.0f / ((float)kKernelHeight * (float)kKernelWidth));
// Handle portion that can be unrolled by 4
constexpr int kUnroll = 4;
constexpr int kLoadSizeFloat = (sizeof(float32x4_t) / sizeof(float));
constexpr int kLoadCols = kUnroll * kLoadSizeFloat;
if (inputW % kLoadCols == 0) {
//
// Manually unroll by 4 (kUnroll)
//
for (int h = 0; h < inputH; h += kKernelHeight) {
float* outputRow = output + (h / kKernelHeight) * (inputW / kKernelWidth);
const float* curInput = input + h * inputW;
for (int w = 0; w < inputW; w += kLoadCols) {
float32x4_t out = {};
{
float32x4_t v0_0 = vld1q_f32_aligned(curInput + 0 * inputW);
float32x4_t v0_1 = vld1q_f32_aligned(curInput + 1 * inputW);
float32x4_t v0_2 = vld1q_f32_aligned(curInput + 2 * inputW);
float32x4_t v0_3 = vld1q_f32_aligned(curInput + 3 * inputW);
float v0 = horizontal_sum_f32(v0_0, v0_1, v0_2, v0_3);
out = vsetq_lane_f32(v0, out, 0);
}
curInput += kLoadSizeFloat;
{
float32x4_t v0_0 = vld1q_f32_aligned(curInput + 0 * inputW);
float32x4_t v0_1 = vld1q_f32_aligned(curInput + 1 * inputW);
float32x4_t v0_2 = vld1q_f32_aligned(curInput + 2 * inputW);
float32x4_t v0_3 = vld1q_f32_aligned(curInput + 3 * inputW);
float v0 = horizontal_sum_f32(v0_0, v0_1, v0_2, v0_3);
out = vsetq_lane_f32(v0, out, 1);
}
curInput += kLoadSizeFloat;
{
float32x4_t v0_0 = vld1q_f32_aligned(curInput + 0 * inputW);
float32x4_t v0_1 = vld1q_f32_aligned(curInput + 1 * inputW);
float32x4_t v0_2 = vld1q_f32_aligned(curInput + 2 * inputW);
float32x4_t v0_3 = vld1q_f32_aligned(curInput + 3 * inputW);
float v0 = horizontal_sum_f32(v0_0, v0_1, v0_2, v0_3);
out = vsetq_lane_f32(v0, out, 2);
}
curInput += kLoadSizeFloat;
{
float32x4_t v0_0 = vld1q_f32_aligned(curInput + 0 * inputW);
float32x4_t v0_1 = vld1q_f32_aligned(curInput + 1 * inputW);
float32x4_t v0_2 = vld1q_f32_aligned(curInput + 2 * inputW);
float32x4_t v0_3 = vld1q_f32_aligned(curInput + 3 * inputW);
float v0 = horizontal_sum_f32(v0_0, v0_1, v0_2, v0_3);
out = vsetq_lane_f32(v0, out, 3);
}
curInput += kLoadSizeFloat;
out = vmulq_f32(out, vdupq_n_f32(kDiv));
vst1q_f32_aligned(&outputRow[w / kKernelWidth], out);
}
}
} else {
//
// Not unrolled
//
for (int h = 0; h < inputH; h += kKernelHeight) {
const float* inputRow = input + h * inputW;
float* outputRow = output + (h / kKernelHeight) * (inputW / kKernelWidth);
for (int w = 0; w < inputW; w += kKernelWidth) {
const float* curInput = inputRow + w;
float32x4_t v0_0 = vld1q_f32_aligned(curInput + 0 * inputW);
float32x4_t v0_1 = vld1q_f32_aligned(curInput + 1 * inputW);
float32x4_t v0_2 = vld1q_f32_aligned(curInput + 2 * inputW);
float32x4_t v0_3 = vld1q_f32_aligned(curInput + 3 * inputW);
float v0 = horizontal_sum_f32(v0_0, v0_1, v0_2, v0_3) * kDiv;
outputRow[w / kKernelWidth] = v0;
}
}
}
}
// Vectorizes 2x2p0s0 average pooling for ARM NEON
void MaxPoolNeon2x2p0s0Plane(
int inputH,
int inputW,
const float* input,
float* output) {
constexpr int kKernelHeight = 2;
constexpr int kKernelWidth = 2;
// Handle portion that can be unrolled by 4
constexpr int kUnroll = 4;
constexpr int kLoadSizeFloat = (sizeof(float32x4_t) / sizeof(float));
constexpr int kLoadCols = kUnroll * kLoadSizeFloat;
if (inputW % kLoadCols == 0) {
for (int h = 0; h < inputH; h += kKernelHeight) {
float* outputRow = output + (h / kKernelHeight) * (inputW / kKernelWidth);
const float* curInput = input + h * inputW;
for (int w = 0; w < inputW; w += kLoadCols) {
float32x2_t hmax_0, hmax_1, hmax_2, hmax_3;
{
float32x4_t v0_0 = vld1q_f32_aligned(curInput + 0 * inputW);
float32x4_t v0_1 = vld1q_f32_aligned(curInput + 1 * inputW);
float32x4_t vmax = vmaxq_f32(v0_0, v0_1);
hmax_0 = vpmax_f32(vget_low_f32(vmax), vget_high_f32(vmax));
}
curInput += kLoadSizeFloat;
{
float32x4_t v0_0 = vld1q_f32_aligned(curInput + 0 * inputW);
float32x4_t v0_1 = vld1q_f32_aligned(curInput + 1 * inputW);
float32x4_t vmax = vmaxq_f32(v0_0, v0_1);
hmax_1 = vpmax_f32(vget_low_f32(vmax), vget_high_f32(vmax));
}
curInput += kLoadSizeFloat;
{
float32x4_t v0_0 = vld1q_f32_aligned(curInput + 0 * inputW);
float32x4_t v0_1 = vld1q_f32_aligned(curInput + 1 * inputW);
float32x4_t vmax = vmaxq_f32(v0_0, v0_1);
hmax_2 = vpmax_f32(vget_low_f32(vmax), vget_high_f32(vmax));
}
curInput += kLoadSizeFloat;
{
float32x4_t v0_0 = vld1q_f32_aligned(curInput + 0 * inputW);
float32x4_t v0_1 = vld1q_f32_aligned(curInput + 1 * inputW);
float32x4_t vmax = vmaxq_f32(v0_0, v0_1);
hmax_3 = vpmax_f32(vget_low_f32(vmax), vget_high_f32(vmax));
}
curInput += kLoadSizeFloat;
float32x4_t out_0 = vcombine_f32(hmax_0, hmax_1);
float32x4_t out_1 = vcombine_f32(hmax_2, hmax_3);
vst1q_f32_aligned(&outputRow[w / kKernelWidth + 0], out_0);
vst1q_f32_aligned(&outputRow[w / kKernelWidth + 4], out_1);
}
}
} else {
// Not unrolled
for (int h = 0; h < inputH; h += kKernelHeight) {
const float* inputRow = input + h * inputW;
float* outputRow = output + (h / kKernelHeight) * (inputW / kKernelWidth);
for (int w = 0; w < inputW; w += kKernelWidth * 2) {
const float* curInput = inputRow + w;
float32x4_t v0_0 = vld1q_f32_aligned(curInput + 0 * inputW);
float32x4_t v0_1 = vld1q_f32_aligned(curInput + 1 * inputW);
float32x4_t vmax = vmaxq_f32(v0_0, v0_1);
float32x2_t hmax = vpmax_f32(vget_low_f32(vmax), vget_high_f32(vmax));
vst1_f32(&outputRow[w / kKernelWidth], hmax);
}
}
}
}
#endif
} // namespace
bool IsNeon4x4p0s0Eligible(
const int input_h,
const int input_w,
const int output_h,
const int output_w,
const int kh,
const int kw,
const int stride_h,
const int stride_w,
const int pad_t,
const int pad_l,
const int pad_b,
const int pad_r,
const int dilation_h,
const int dilation_w,
const float* X,
float* Y) {
#if defined(__ARM_NEON__) || defined(__ARM_NEON)
// Use this kernel only if:
// 1. Kernel size is 4x4
// 2. Stride is 4x4
// 3. Padding is 0
// 4. Dilation is 1
// 5. Output width and height are even divisors of input width
// 6. Input width and height are divisible by 4 (should be implied by all of
// the above, but just check again)
// Input and output pointers are aligned by float32x4_t
const bool kernel_ok = (kh == 4) && (kw == 4);
const bool stride_ok = (stride_h == 4) && (stride_w == 4);
const bool pad_ok =
(pad_t == 0) && (pad_l == 0) && (pad_b == 0) && (pad_r == 0);
const bool dilation_ok = (dilation_h == 1) && (dilation_w == 1);
const bool output_ok = (input_h % output_h == 0) && (input_w % output_w == 0);
const bool input_ok = (input_w % 4 == 0) && (input_h % 4 == 0);
const bool align_ok = isPointerAligned(X, sizeof(float32x4_t)) &&
isPointerAligned(Y, sizeof(float32x4_t));
return kernel_ok && stride_ok && pad_ok && dilation_ok && output_ok &&
input_ok && align_ok;
#else
(void)input_h;
(void)input_w;
(void)output_h;
(void)output_w;
(void)kh;
(void)kw;
(void)stride_h;
(void)stride_w;
(void)pad_t;
(void)pad_l;
(void)pad_b;
(void)pad_r;
(void)dilation_h;
(void)dilation_w;
(void)X;
(void)Y;
return false;
#endif
}
bool IsNeon2x2p0s0Eligible(
const int input_h,
const int input_w,
const int output_h,
const int output_w,
const int kh,
const int kw,
const int stride_h,
const int stride_w,
const int pad_t,
const int pad_l,
const int pad_b,
const int pad_r,
const int dilation_h,
const int dilation_w,
const float* X,
float* Y) {
#if defined(__ARM_NEON__) || defined(__ARM_NEON)
// Use this kernel only if:
// 1. Kernel size is 2x2
// 2. Stride is 2x2
// 3. Padding is 0
// 4. Dilation is 1
// 5. Output width and height are even divisors of input width
// 6. Input width and height are divisible by 4 (should be implied b all of
// the above, but just check again)
// Input and output pointers are aligned by float32x4_t
const bool kernel_ok = (kh == 2) && (kw == 2);
const bool stride_ok = (stride_h == 2) && (stride_w == 2);
const bool pad_ok =
(pad_t == 0) && (pad_l == 0) && (pad_b == 0) && (pad_r == 0);
const bool dilation_ok = (dilation_h == 1) && (dilation_w == 1);
const bool output_ok = (input_h % output_h == 0) && (input_w % output_w == 0);
const bool input_ok = (input_w % 4 == 0) && (input_h % 4 == 0);
const bool align_ok = isPointerAligned(X, sizeof(float32x4_t)) &&
isPointerAligned(Y, sizeof(float32x4_t));
return kernel_ok && stride_ok && pad_ok && dilation_ok && output_ok &&
input_ok && align_ok;
#else
(void)input_h;
(void)input_w;
(void)output_h;
(void)output_w;
(void)kh;
(void)kw;
(void)stride_h;
(void)stride_w;
(void)pad_t;
(void)pad_l;
(void)pad_b;
(void)pad_r;
(void)dilation_h;
(void)dilation_w;
(void)X;
(void)Y;
return false;
#endif
}
void RunNeonAveragePool4x4p0s0NCHW(
int N,
int C,
int H,
int W,
const float* X,
float* Y) {
#if defined(__ARM_NEON__) || defined(__ARM_NEON)
const int X_stride = H * W;
const int Y_stride = (H / 4) * (W / 4);
const float* X_ptr = X;
float* Y_ptr = Y;
for (int i = 0; i < N; ++i) {
for (int j = 0; j < C; ++j) {
AvgPoolNeon4x4p0s0Plane(H, W, X_ptr, Y_ptr);
X_ptr += X_stride;
Y_ptr += Y_stride;
}
}
#else
(void)N;
(void)C;
(void)H;
(void)W;
(void)X;
(void)Y;
#endif
}
void RunNeonMaxPool2x2p0s0NCHW(
int N,
int C,
int H,
int W,
const float* X,
float* Y) {
#if defined(__ARM_NEON__) || defined(__ARM_NEON)
const int X_stride = H * W;
const int Y_stride = (H / 2) * (W / 2);
const float* X_ptr = X;
float* Y_ptr = Y;
for (int i = 0; i < N; ++i) {
for (int j = 0; j < C; ++j) {
MaxPoolNeon2x2p0s0Plane(H, W, X_ptr, Y_ptr);
X_ptr += X_stride;
Y_ptr += Y_stride;
}
}
#else
(void)N;
(void)C;
(void)H;
(void)W;
(void)X;
(void)Y;
#endif
}
} // namespace pool_op_util
} // namespace caffe2