forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathpow_op.cc
378 lines (345 loc) · 12.8 KB
/
pow_op.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
#include "caffe2/operators/pow_op.h"
#include "caffe2/utils/eigen_utils.h"
#include "caffe2/utils/math.h"
// definition of NumericTypes and SameTypeAsInput is in below header file
//#include "caffe2/operators/elementwise_op.h"
#include <Eigen/Core>
namespace caffe2 {
#define EIGEN_POW(x, y) (x.pow(y))
struct EigenPowFunctor {
template <int b_is_scalar, typename T1, typename T2, typename R>
inline void
Run(size_t n, const T1* a, const T2* b, T2 e, R* out, CPUContext*) {
// NOLINTNEXTLINE(modernize-use-nullptr)
if (b == NULL) {
EigenVectorArrayMap<R>(out, n) =
EIGEN_POW((ConstEigenVectorArrayMap<T1>(a, n)), (e));
} else {
if (b_is_scalar) {
if (b[0] == -1.) {
EigenVectorArrayMap<R>(out, n) =
ConstEigenVectorArrayMap<T1>(a, n).inverse();
} else if (b[0] == 0.5) {
EigenVectorArrayMap<R>(out, n) =
ConstEigenVectorArrayMap<T1>(a, n).sqrt();
} else if (b[0] == -0.5) {
EigenVectorArrayMap<R>(out, n) =
ConstEigenVectorArrayMap<T1>(a, n).rsqrt();
} else if (b[0] == 2.) {
EigenVectorArrayMap<R>(out, n) =
ConstEigenVectorArrayMap<T1>(a, n).square();
} else {
EigenVectorArrayMap<R>(out, n) =
EIGEN_POW((ConstEigenVectorArrayMap<T1>(a, n)), (b[0]));
}
} else {
EigenVectorArrayMap<R>(out, n) = EIGEN_POW(
(ConstEigenVectorArrayMap<T1>(a, n)),
(ConstEigenVectorArrayMap<T2>(b, n)));
}
}
}
template <typename T1, typename T2, typename R>
void RunWithBroadcast(
const T1* a,
const T2* b,
R* out,
size_t pre,
size_t n,
CPUContext*) {
EigenArrayMap<R>(out, n, pre) = EIGEN_POW(
(ConstEigenArrayMap<T1>(a, n, pre)),
(ConstEigenVectorArrayMap<T2>(b, n)).rowwise().replicate(pre));
/*
//below code only allows elementary ops, such as +, -, * and /,
//and does not allow operations, such as pow, exp and log
EIGEN_POW(
(ConstEigenArrayMap<T>(a, n, pre).colwise()),
(ConstEigenVectorArrayMap<T>(b, n)));
*/
}
template <typename T1, typename T2, typename R>
void RunWithBroadcast2(
const T1* a,
const T2* b,
R* out,
size_t pre,
size_t n,
size_t post,
CPUContext*) {
for (auto i = 0U; i < pre; ++i) {
EigenArrayMap<R>(out + i * n * post, post, n) = EIGEN_POW(
(ConstEigenArrayMap<T1>(a + i * n * post, post, n)),
(Eigen::Map<const Eigen::Array<T2, 1, Eigen::Dynamic>>(b, n))
.colwise()
.replicate(post));
/*
//below code only allows elementary ops, such as +, -, * and /,
//and does not allow for operations, such as pow, exp and log
EIEGN_POW(
(ConstEigenArrayMap<T>(a + i * n * post, post, n).rowwise()),
(Eigen::Map<const Eigen::Array<T, 1, Eigen::Dynamic>>(b, n)));
*/
}
}
};
REGISTER_CPU_OPERATOR(
Pow,
PowOp<
TensorTypes<float> /*NumericTypes*/,
CPUContext,
EigenPowFunctor,
SameTypeAsInput>)
OPERATOR_SCHEMA(Pow)
.NumInputs(1, 2)
.NumOutputs(1)
.AllowInplace({{0, 0}, {1, 0}})
.IdenticalTypeAndShapeOfInput(0)
.SetDoc(R"DOC(
The *Pow* op takes an input data tensor $X$ and an exponent parameter *exponent*, which can be a scalar or another tensor. As output, it produces a single output data tensor $Y$, where the function $f(x) = x^{exponent}$ has been applied to $X$ elementwise.
Github Links:
- https://github.com/pytorch/pytorch/blob/master/caffe2/operators/pow_op.h
- https://github.com/pytorch/pytorch/blob/master/caffe2/operators/pow_op.cc
<details>
<summary> <b>Example</b> </summary>
**Code**
```
workspace.ResetWorkspace()
op = core.CreateOperator(
"Pow",
["X", "exponent"],
["Y"],
broadcast=1
)
workspace.FeedBlob("X", np.array([1,2,3,4,5,6]).astype(np.float32))
print("X: ", workspace.FetchBlob("X"))
workspace.FeedBlob("exponent", np.array([2]).astype(np.float32))
print("exponent: ", workspace.FetchBlob("exponent"))
workspace.RunOperatorOnce(op)
print("Y: ", workspace.FetchBlob("Y"))
```
**Result**
```
X: [1. 2. 3. 4. 5. 6.]
exponent: [2.]
Y: [ 1. 4. 9. 16. 25. 36.]
```
</details>
)DOC")
.Input(0, "X", "Input data blob to be operated on.")
.Input(1, "exponent", "Exponent blob containing the exponent(s) for calculation. Do not use if setting exponent via argument.")
.Output(0, "Y", "Output data blob with the same shape as the input.")
.Arg("exponent", "The exponent of the power function. Do not use if setting exponent via input.")
.Arg("axis", "*(type: int; default: -1)*")
.Arg("broadcast", "*(type: bool; default: False)*");
class GetPowGradient : public GradientMakerBase {
using GradientMakerBase::GradientMakerBase;
vector<OperatorDef> GetGradientDefs() override {
ArgumentHelper arg_helper(def_);
if (arg_helper.HasArgument("exponent")) { // second input is a scalar
// function f(w,a) = w^a
// gradient operator with respect to first input tensor
// df/dw = a * w^(a-1) (all operations are component-wise)
float exponent = arg_helper.GetSingleArgument<float>("exponent", 0.0);
Argument scale_arg;
scale_arg.set_name("scale");
scale_arg.set_f(exponent);
Argument pow_arg;
pow_arg.set_name("exponent");
if (I(0) != O(0)) {
pow_arg.set_f(exponent - 1);
} else {
LOG(WARNING) << "In-place Pow gradient, possible loss of precision";
constexpr float kEps = 1e-12f;
CAFFE_ENFORCE(std::fabs(exponent) > kEps);
pow_arg.set_f((exponent - 1) / exponent);
}
return vector<OperatorDef>{CreateOperatorDef(
"Pow",
"",
std::vector<string>{I(0)},
std::vector<string>{GI(0)},
std::vector<Argument>{pow_arg}),
CreateOperatorDef(
"Mul",
"",
std::vector<string>{GI(0), GO(0)},
std::vector<string>{GI(0)}),
CreateOperatorDef(
"Scale",
"",
std::vector<string>{GI(0)},
std::vector<string>{GI(0)},
std::vector<Argument>{scale_arg})};
/*
// Alternative gradient computation
return vector<OperatorDef>{CreateOperatorDef(
"Div",
"",
std::vector<string>{O(0), I(0)},
std::vector<string>{GI(0)}),
CreateOperatorDef(
"Mul",
"",
std::vector<string>{GI(0), GO(0)},
std::vector<string>{GI(0)}),
CreateOperatorDef(
"Scale",
"",
std::vector<string>{GI(0)},
std::vector<string>{GI(0)},
std::vector<Argument>{scale_arg})};
*/
} else { // second input is a tensor
CAFFE_ENFORCE(
Def().input(0) != Def().output(0) &&
Def().input(1) != Def().output(0),
"Gradient computation cannot be carried out if Pow uses in-place "
"computation: ",
ProtoDebugString(Def()));
vector<OperatorDef> grad_ops;
Argument one_arg;
one_arg.set_name("value");
one_arg.set_f(1);
Argument broadcast, axis, axis_str, order;
bool bflag = ArgumentHelper::HasArgument(Def(), "broadcast");
if (bflag) {
if (ArgumentHelper::HasArgument(Def(), "broadcast")) {
broadcast = GetArgument(Def(), "broadcast");
} else {
broadcast = MakeArgument<int>("broadcast", 0);
}
if (ArgumentHelper::HasArgument(Def(), "axis")) {
axis = GetArgument(Def(), "axis");
} else {
axis = MakeArgument<int>("axis", -1);
}
if (ArgumentHelper::HasArgument(Def(), "axis_str")) {
axis_str = GetArgument(Def(), "axis_str");
} else {
axis_str = MakeArgument<string>("axis_str", "");
}
if (ArgumentHelper::HasArgument(Def(), "order")) {
order = GetArgument(Def(), "order");
} else {
order = MakeArgument<string>("order", "NCHW");
}
}
// function f(w,a) = w^a
// gradient operator with respect to first input tensor
// df/dw = a * w^(a-1) (all operations are component-wise)
grad_ops.push_back(CreateOperatorDef(
"ConstantFill",
"",
std::vector<string>{I(1)},
std::vector<string>{GI(1)},
std::vector<Argument>{one_arg}));
grad_ops.push_back(CreateOperatorDef(
"Sub",
"",
std::vector<string>{I(1), GI(1)},
std::vector<string>{GI(1)}));
if (bflag) {
grad_ops.push_back(CreateOperatorDef(
"Pow",
"",
std::vector<string>{I(0), GI(1)},
std::vector<string>{GI(0)},
vector<Argument>{broadcast, axis, axis_str, order}));
} else {
grad_ops.push_back(CreateOperatorDef(
"Pow",
"",
std::vector<string>{I(0), GI(1)},
std::vector<string>{GI(0)}));
}
grad_ops.push_back(CreateOperatorDef(
"Mul",
"",
std::vector<string>{GI(0), GO(0)},
std::vector<string>{GI(0)}));
if (bflag) {
grad_ops.push_back(CreateOperatorDef(
"Mul",
"",
std::vector<string>{GI(0), I(1)},
std::vector<string>{GI(0)},
vector<Argument>{broadcast, axis, axis_str, order}));
} else {
grad_ops.push_back(CreateOperatorDef(
"Mul",
"",
std::vector<string>{GI(0), I(1)},
std::vector<string>{GI(0)}));
}
/*
// Alternative gradient computation (no broadcast support)
grad_ops.push_back(CreateOperatorDef(
"Div",
"",
std::vector<string>{O(0), I(0)},
std::vector<string>{GI(0)}));
grad_ops.push_back(CreateOperatorDef(
"Mul",
"",
std::vector<string>{GI(0), GO(0)},
std::vector<string>{GI(0)}));
grad_ops.push_back(CreateOperatorDef(
"Mul",
"",
std::vector<string>{GI(0), I(1)},
std::vector<string>{GI(0)}));
*/
// gradient operator for with respect to second input tensor
// df/da = w^a * ln w (all operations are component-wise)
/*
// reset GI(1) to zero
Argument zero_arg;
zero_arg.set_name("value");
zero_arg.set_f(0);
grad_ops.push_back(CreateOperatorDef(
"ConstantFill",
"",
std::vector<string>{I(1)},
std::vector<string>{GI(1)},
std::vector<Argument>{zero_arg}));
*/
grad_ops.push_back(CreateOperatorDef(
"Log",
"",
std::vector<string>{I(0)},
std::vector<string>{GI(1) + "_autogen_pre_red"}));
grad_ops.push_back(CreateOperatorDef(
"Mul",
"",
std::vector<string>{GI(1) + "_autogen_pre_red", O(0)},
std::vector<string>{GI(1) + "_autogen_pre_red"}));
if (bflag) {
grad_ops.push_back(CreateOperatorDef(
"Mul",
"",
std::vector<string>{GI(1) + "_autogen_pre_red", GO(0)},
std::vector<string>{GI(1) + "_autogen_pre_red"}));
grad_ops.push_back(CreateOperatorDef(
"SumReduceLike",
"",
vector<string>{GI(1) + "_autogen_pre_red", I(1)},
vector<string>{GI(1)},
vector<Argument>{axis, axis_str, order}));
} else {
grad_ops.push_back(CreateOperatorDef(
"Mul",
"",
std::vector<string>{GI(1) + "_autogen_pre_red", GO(0)},
std::vector<string>{GI(1)}));
}
return grad_ops;
}
}
// Argument `shape` is no longer needed in backprop.
bool CopyArguments() const override {
return false;
}
};
REGISTER_GRADIENT(Pow, GetPowGradient);
} // namespace caffe2