forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathquant_decode_op.cc
69 lines (56 loc) · 2.21 KB
/
quant_decode_op.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
#include "quant_decode_op.h"
// NOLINTNEXTLINE(modernize-deprecated-headers)
#include <stdint.h>
#include "caffe2/core/tensor.h"
#include <c10/util/typeid.h>
namespace caffe2 {
REGISTER_CPU_OPERATOR(QuantDecode, QuantDecodeOp<QuantDecodeRunTy::RUN_ALWAYS>);
REGISTER_CPU_GRADIENT_OPERATOR(QuantDecodeGradient, QuantDecodeGradientOp);
#ifdef CAFFE2_USE_MPSCNN
REGISTER_CPU_OPERATOR(
MPSCNNQuantDecode,
QuantDecodeOp<QuantDecodeRunTy::RUN_ONCE>);
#endif
OPERATOR_SCHEMA(QuantDecode)
.NumInputsOutputs([](int in, int out) { return in > 1 && out + 1 == in; })
.SetDoc(R"DOC(
Decode inputs using codebook. This is a general LUT operator that returns
tensors with values from codebook (input 0) based on given indices in
codes (input 1 ~ n).
Example:
Input:
codebook = [1.5, 2.5, 3.5]
codes_0 = [0, 1, 1, 2]
codes_1 = [2, 0, 0]
Output:
decoded_0 = [1.5, 2.5, 2.5, 3.5]
decoded_1 = [3.5, 1.5, 1.5]
)DOC")
.Input(0, "codebook", "Codebook in 1d tensor (float)")
.Input(1, "codes_0", "Encoded codes 0 (uint8/uint16/int32)")
.Input(2, "codes_1", "Encoded codes 1 if existed (uint8/uint16/int32)")
.Input(3, "codes_n", "Encoded codes n if existed (uint8/uint16/int32)")
.Output(0, "decoded_0", "Decoded tensor for codes_0 (float)")
.Output(1, "decoded_1", "Decoded tensor for codes_1 (float)")
.Output(2, "decoded_n", "Decoded tensor for codes_n (float)");
GRADIENT_OPERATOR_SCHEMA(QuantDecodeGradient)
.NumInputs([](int in) { return in >= 3 && in % 2 == 1; })
.NumOutputs(1);
class GetQuantDecodeGradient : public GradientMakerBase {
using GradientMakerBase::GradientMakerBase;
vector<OperatorDef> GetGradientDefs() override {
CAFFE_ENFORCE_EQ(Def().input_size(), Def().output_size() + 1);
vector<string> gradient_op_inputs;
for (int i = 0; i < Def().input_size(); i++) {
// NOLINTNEXTLINE(performance-inefficient-vector-operation)
gradient_op_inputs.push_back(I(i));
}
for (int i = 0; i < Def().output_size(); i++) {
gradient_op_inputs.push_back(GO(i));
}
return SingleGradientDef(
"QuantDecodeGradient", "", gradient_op_inputs, vector<string>{GI(0)});
}
};
REGISTER_GRADIENT(QuantDecode, GetQuantDecodeGradient);
} // namespace caffe2