forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathquant_decode_op.h
172 lines (143 loc) · 5.32 KB
/
quant_decode_op.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
#ifndef QUANT_DECODE_OP_H_
#define QUANT_DECODE_OP_H_
#include <c10/util/irange.h>
#include <c10/util/typeid.h>
#include "caffe2/core/context.h"
#include "caffe2/core/operator.h"
#include "caffe2/core/tensor.h"
namespace caffe2 {
namespace {
template <class CodebookT, class CodeT>
void Decode(
const Tensor& codebook,
const Tensor& codes,
/* optional */ const Tensor* const decoded_grad,
Tensor* const output,
bool resizeOnly) {
CAFFE_ENFORCE(codebook.IsType<CodebookT>());
auto* cb_ptr = codebook.data<CodebookT>();
int cb_size = codebook.numel();
CAFFE_ENFORCE(codes.IsType<CodeT>());
auto* code_ptr = codes.data<CodeT>();
if (decoded_grad == nullptr) {
// Forward pass: decode and store codebook values in output.
output->ResizeLike(codes);
auto* out_ptr = output->template mutable_data<CodebookT>();
if (resizeOnly) {
return;
}
int sz = output->numel();
for (C10_UNUSED const auto i : c10::irange(sz)) {
TORCH_DCHECK_LE(*code_ptr, cb_size);
*out_ptr++ = cb_ptr[*code_ptr++];
}
} else {
// Backward pass: decode and accumulate gradient w.r.t. codebook values.
CAFFE_ENFORCE_EQ(codes.numel(), decoded_grad->numel());
auto* gradient_ptr = decoded_grad->data<CodebookT>();
auto* const gradient_end = gradient_ptr + decoded_grad->numel();
CAFFE_ENFORCE_EQ(cb_size, output->numel());
auto* out_ptr = output->template mutable_data<CodebookT>();
while (gradient_ptr < gradient_end) {
TORCH_DCHECK_LE(*code_ptr, cb_size);
out_ptr[*code_ptr++] += *gradient_ptr++;
}
}
}
#define REGISTER_DECODER(codebookType, codesType) \
{ \
{TypeMeta::Id<codebookType>(), TypeMeta::Id<codesType>()}, \
[](const Tensor& codebook_, \
const Tensor& codes_, \
const Tensor* gradient_, \
Tensor* outDecoded_, \
bool resizeOnly_) { \
Decode<codebookType, codesType>( \
codebook_, codes_, gradient_, outDecoded_, resizeOnly_); \
} \
}
inline void DecodeGeneral(
const Tensor& codebook,
const Tensor& codes,
const Tensor* gradient,
Tensor* outDecoded,
bool resizeOnly) {
const static std::map<
std::pair<TypeIdentifier, TypeIdentifier>,
std::function<void(
const Tensor& codebook,
const Tensor& codes,
const Tensor* gradient,
Tensor* outDecoded,
bool resizeOnly)>>
gDecoderMapper = {REGISTER_DECODER(float, uint8_t),
REGISTER_DECODER(float, uint16_t),
REGISTER_DECODER(float, int32_t)};
gDecoderMapper.at({codebook.dtype().id(), codes.dtype().id()})(
codebook, codes, gradient, outDecoded, resizeOnly);
}
} // namespace
// Decode tensors based on given codebook,
// The codebook is generated by model_quantize.py
enum class QuantDecodeRunTy {
RUN_ALWAYS,
RUN_ONCE,
};
template <QuantDecodeRunTy QuantDecodeRun>
class QuantDecodeOp final : public Operator<CPUContext> {
public:
USE_OPERATOR_FUNCTIONS(CPUContext);
template <class... Args>
explicit QuantDecodeOp(Args&&... args)
: Operator<CPUContext>(std::forward<Args>(args)...) {}
~QuantDecodeOp() {}
bool RunOnDevice() override {
CAFFE_ENFORCE_GT(InputSize(), 1);
// first input is the codebook
CAFFE_ENFORCE_EQ(InputSize(), OutputSize() + 1);
const auto& codebook = Input(0);
CAFFE_ENFORCE(codebook.template IsType<float>(), codebook.dtype().name());
for (const auto i : c10::irange(OutputSize())) {
auto& ci = Input(i + 1);
auto* co = Output(i);
DecodeGeneral(
codebook,
ci,
nullptr,
co,
/*resizeOnly=*/QuantDecodeRun == QuantDecodeRunTy::RUN_ONCE &&
hasRun_);
}
hasRun_ = true;
return true;
}
private:
bool hasRun_{false};
};
class QuantDecodeGradientOp final : public Operator<CPUContext> {
public:
USE_OPERATOR_FUNCTIONS(CPUContext);
template <class... Args>
explicit QuantDecodeGradientOp(Args&&... args)
: Operator<CPUContext>(std::forward<Args>(args)...) {}
~QuantDecodeGradientOp() {}
bool RunOnDevice() override {
// Inputs: 1 codebook, n tensors of codes, and n corresponding gradients.
CAFFE_ENFORCE(InputSize() >= 3 && InputSize() % 2 == 1);
const int num_code_tensors = (InputSize() - 1) / 2;
CAFFE_ENFORCE_EQ(OutputSize(), 1);
const auto& codebook = Input(0);
CAFFE_ENFORCE(codebook.template IsType<float>(), codebook.dtype().name());
auto* gradient = Output(0, codebook.sizes(), at::dtype<float>());
auto* gradient_ptr = gradient->template mutable_data<float>();
std::fill(gradient_ptr, gradient_ptr + gradient->numel(), 0);
for (const auto i : c10::irange(num_code_tensors)) {
auto& codes_i = Input(i + 1);
auto& output_gradient_i = Input(i + num_code_tensors + 1);
DecodeGeneral(codebook, codes_i, &output_gradient_i, gradient, false);
}
return true;
}
};
} // namespace caffe2
#endif // QUANT_DECODE_OP_H_