forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathreduce_front_back_sum_mean_ops.cu
272 lines (251 loc) · 7.19 KB
/
reduce_front_back_sum_mean_ops.cu
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
#include <cub/block/block_reduce.cuh>
#include "caffe2/core/context_gpu.h"
#include "caffe2/operators/reduce_front_back_sum_mean_ops.h"
#include "caffe2/utils/cub_namespace.cuh"
namespace caffe2 {
namespace {
template <typename T, bool NORMALIZE>
__global__ void columnwise_fill_kernel(
const int rows,
const int cols,
const T* dY,
const int* lengths,
T* dX) {
CUDA_1D_KERNEL_LOOP(i, rows * cols) {
int row = i / cols;
int col = i % cols;
if (lengths == nullptr) {
dX[i] = NORMALIZE ? dY[col] / rows : dY[col];
} else if (row < lengths[col]) {
dX[i] = NORMALIZE ? dY[col] / lengths[col] : dY[col];
} else {
dX[i] = 0;
}
}
}
template <typename T, bool NORMALIZE>
__global__ void rowwise_fill_kernel(
const int rows,
const int cols,
const T* dY,
const int* lengths,
T* dX) {
CUDA_1D_KERNEL_LOOP(i, rows * cols) {
int row = i / cols;
int col = i % cols;
if (lengths == nullptr) {
dX[i] = NORMALIZE ? dY[row] / cols : dY[row];
} else if (col < lengths[row]) {
dX[i] = NORMALIZE ? dY[row] / lengths[row] : dY[row];
} else {
dX[i] = 0;
}
}
}
template <typename T, bool NORMALIZE>
__global__ void rowwise_sum_kernel(
const int rows,
const int cols,
const T* data,
const int* lengths,
T* out) {
typedef cub::BlockReduce<float, CAFFE_CUDA_NUM_THREADS> BlockReduce;
__shared__ typename BlockReduce::TempStorage temp_storage;
for (int rowIndex = blockIdx.x; rowIndex < rows; rowIndex += gridDim.x) {
T sum = 0;
const int rowOffset = rowIndex * cols;
const int length = lengths == nullptr ? cols : lengths[rowIndex];
for (int colIndex = threadIdx.x; colIndex < length;
colIndex += blockDim.x) {
sum += data[rowOffset + colIndex];
}
sum = BlockReduce(temp_storage).Reduce(sum, cub::Sum());
if (threadIdx.x == 0) {
out[rowIndex] = NORMALIZE ? sum / length : sum;
}
__syncthreads();
}
}
template <typename T, bool NORMALIZE>
__global__ void columnwise_sum_kernel(
const int rows,
const int cols,
const T* data,
const int* lengths,
T* out) {
typedef cub::BlockReduce<float, CAFFE_CUDA_NUM_THREADS> BlockReduce;
__shared__ typename BlockReduce::TempStorage temp_storage;
for (int colIndex = blockIdx.x; colIndex < cols; colIndex += gridDim.x) {
T sum = 0;
const int length = lengths == nullptr ? rows : lengths[colIndex];
for (int rowIndex = threadIdx.x; rowIndex < length;
rowIndex += blockDim.x) {
sum += data[rowIndex * cols + colIndex];
}
sum = BlockReduce(temp_storage).Reduce(sum, cub::Sum());
if (threadIdx.x == 0) {
out[colIndex] = NORMALIZE ? sum / length : sum;
}
__syncthreads();
}
}
} // anonymous namespace
/***
Sum Ops
***/
// ReduceFrontSum: columnwise sum
template <>
template <typename T>
void SumReduceDimsOp<CUDAContext, true, false>::Compute(
int rows,
int cols,
const T* in_data,
const int* lengths_data,
T* out_data) {
columnwise_sum_kernel<T, false>
<<<std::min(cols, CAFFE_MAXIMUM_NUM_BLOCKS),
CAFFE_CUDA_NUM_THREADS,
0,
context_.cuda_stream()>>>(rows, cols, in_data, lengths_data, out_data);
C10_CUDA_KERNEL_LAUNCH_CHECK();
}
// ReduceBackSum: rowwise sum
template <>
template <typename T>
void SumReduceDimsOp<CUDAContext, false, false>::Compute(
int rows,
int cols,
const T* in_data,
const int* lengths_data,
T* out_data) {
rowwise_sum_kernel<T, false>
<<<std::min(rows, CAFFE_MAXIMUM_NUM_BLOCKS),
CAFFE_CUDA_NUM_THREADS,
0,
context_.cuda_stream()>>>(rows, cols, in_data, lengths_data, out_data);
C10_CUDA_KERNEL_LAUNCH_CHECK();
}
// ReduceFrontSumGradient
template <>
template <typename T>
void SumReduceDimsGradientOp<CUDAContext, true, false>::Compute(
int rows,
int cols,
const T* dYdata,
const int* lengths_data,
T* dXdata) {
columnwise_fill_kernel<T, false>
<<<CAFFE_GET_BLOCKS(rows * cols),
CAFFE_CUDA_NUM_THREADS,
0,
context_.cuda_stream()>>>(rows, cols, dYdata, lengths_data, dXdata);
C10_CUDA_KERNEL_LAUNCH_CHECK();
}
// ReduceBackSumGradient
template <>
template <typename T>
void SumReduceDimsGradientOp<CUDAContext, false, false>::Compute(
int rows,
int cols,
const T* dYdata,
const int* lengths_data,
T* dXdata) {
rowwise_fill_kernel<T, false>
<<<CAFFE_GET_BLOCKS(rows * cols),
CAFFE_CUDA_NUM_THREADS,
0,
context_.cuda_stream()>>>(rows, cols, dYdata, lengths_data, dXdata);
C10_CUDA_KERNEL_LAUNCH_CHECK();
}
REGISTER_CUDA_OPERATOR(
ReduceFrontSum,
SumReduceDimsOp<CUDAContext, true, false>);
REGISTER_CUDA_OPERATOR(
ReduceFrontSumGradient,
SumReduceDimsGradientOp<CUDAContext, true, false>);
REGISTER_CUDA_OPERATOR(
ReduceBackSum,
SumReduceDimsOp<CUDAContext, false, false>);
REGISTER_CUDA_OPERATOR(
ReduceBackSumGradient,
SumReduceDimsGradientOp<CUDAContext, false, false>);
/***
Mean Ops
***/
// ReduceFrontMean: columnwise mean
template <>
template <typename T>
void SumReduceDimsOp<CUDAContext, true, true>::Compute(
int rows,
int cols,
const T* in_data,
const int* lengths_data,
T* out_data) {
columnwise_sum_kernel<T, true>
<<<std::min(cols, CAFFE_MAXIMUM_NUM_BLOCKS),
CAFFE_CUDA_NUM_THREADS,
0,
context_.cuda_stream()>>>(rows, cols, in_data, lengths_data, out_data);
C10_CUDA_KERNEL_LAUNCH_CHECK();
}
// ReduceBackMean: rowwise mean
template <>
template <typename T>
void SumReduceDimsOp<CUDAContext, false, true>::Compute(
int rows,
int cols,
const T* in_data,
const int* lengths_data,
T* out_data) {
rowwise_sum_kernel<T, true>
<<<std::min(rows, CAFFE_MAXIMUM_NUM_BLOCKS),
CAFFE_CUDA_NUM_THREADS,
0,
context_.cuda_stream()>>>(rows, cols, in_data, lengths_data, out_data);
C10_CUDA_KERNEL_LAUNCH_CHECK();
}
// ReduceFrontMeanGradient
template <>
template <typename T>
void SumReduceDimsGradientOp<CUDAContext, true, true>::Compute(
int rows,
int cols,
const T* dYdata,
const int* lengths_data,
T* dXdata) {
columnwise_fill_kernel<T, true>
<<<CAFFE_GET_BLOCKS(rows * cols),
CAFFE_CUDA_NUM_THREADS,
0,
context_.cuda_stream()>>>(rows, cols, dYdata, lengths_data, dXdata);
C10_CUDA_KERNEL_LAUNCH_CHECK();
}
// ReduceBackMeanGradient
template <>
template <typename T>
void SumReduceDimsGradientOp<CUDAContext, false, true>::Compute(
int rows,
int cols,
const T* dYdata,
const int* lengths_data,
T* dXdata) {
rowwise_fill_kernel<T, true>
<<<CAFFE_GET_BLOCKS(rows * cols),
CAFFE_CUDA_NUM_THREADS,
0,
context_.cuda_stream()>>>(rows, cols, dYdata, lengths_data, dXdata);
C10_CUDA_KERNEL_LAUNCH_CHECK();
}
REGISTER_CUDA_OPERATOR(
ReduceFrontMean,
SumReduceDimsOp<CUDAContext, true, true>);
REGISTER_CUDA_OPERATOR(
ReduceFrontMeanGradient,
SumReduceDimsGradientOp<CUDAContext, true, true>);
REGISTER_CUDA_OPERATOR(
ReduceBackMean,
SumReduceDimsOp<CUDAContext, false, true>);
REGISTER_CUDA_OPERATOR(
ReduceBackMeanGradient,
SumReduceDimsGradientOp<CUDAContext, false, true>);
} // namespace caffe2