forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathreducer_functors.h
839 lines (740 loc) · 24.1 KB
/
reducer_functors.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
#ifndef CAFFE2_OPERATORS_RECUDER_FUNCTORS_H_
#define CAFFE2_OPERATORS_RECUDER_FUNCTORS_H_
#include <array>
#include "caffe2/core/context.h"
#include "caffe2/core/tensor.h"
#include "caffe2/utils/eigen_utils.h"
#include "caffe2/utils/math.h"
#include "caffe2/utils/proto_utils.h"
namespace caffe2 {
////////////////////////////////////////////////////////////////////////////////
// Range reducers: can leverage that input segment is continuous and provide
// special implementation
////////////////////////////////////////////////////////////////////////////////
// Put forward and backward in the same template?
template <typename T, class Context>
class SumRangeReducer;
template <typename T, class Context>
class SumRangeReducerGradient;
template <typename T>
class SumRangeReducer<T, CPUContext> {
public:
void operator()(
const int64_t block_size,
const int64_t blocks,
const T* in,
T* out,
CPUContext* /*context*/) {
// do we need to go through wrapper in math.h?
EigenVectorMap<T> out_vec(out, block_size);
out_vec = ConstEigenMatrixMap<T>(in, block_size, blocks).rowwise().sum();
}
};
template <typename T, class Context>
class SumRangeReducerGradient {
public:
void operator()(
const int64_t block_size,
const int64_t blocks,
const T* segment_grad,
T* data_grad,
const T* /*data_in*/, // unused
const T* /*data_out*/, // unused
Context* context) {
// do we have some op that does it smartly with minimum number of memcpy?
for (const auto i : c10::irange(blocks)) {
context->template CopySameDevice<T>(
block_size, segment_grad, data_grad + block_size * i);
}
}
};
struct SumRangeReducerDef {
template <typename T, class Context>
using Reducer = SumRangeReducer<T, Context>;
template <typename T, class Context>
using ReducerGradient = SumRangeReducerGradient<T, Context>;
static constexpr const char* name = "Sum";
static constexpr const char* doc =
"Summation is done element-wise across slices of the input tensor and "
"doesn't change the shape of the individual blocks.";
};
// Put forward and backward in the same template?
template <typename T, class Context>
class LogSumExpRangeReducer;
template <typename T, class Context>
class LogSumExpRangeReducerGradient;
template <typename T>
class LogSumExpRangeReducer<T, CPUContext> {
public:
void operator()(
const int64_t block_size,
const int64_t blocks,
const T* in,
T* out,
CPUContext* /*context*/) {
for (const auto j : c10::irange(block_size)) {
T max_value = std::numeric_limits<T>::lowest();
for (const auto i : c10::irange(blocks)) {
max_value = std::max(max_value, in[i * block_size + j]);
}
T scaled_exp_sum = 0;
for (const auto i : c10::irange(blocks)) {
scaled_exp_sum += std::exp(in[i * block_size + j] - max_value);
}
*(out++) = std::log(scaled_exp_sum) + max_value;
}
}
T r{1};
};
template <typename T, class Context>
class LogSumExpRangeReducerGradient {
public:
void operator()(
const int64_t block_size,
const int64_t blocks,
const T* segment_grad, // GO
T* data_grad, // GI
const T* data_in, // I
const T* data_out, // O
Context* /*context*/) {
for (const auto j : c10::irange(block_size)) {
const T out_grad = *(segment_grad++);
const T offset = *(data_out++);
for (const auto i : c10::irange(blocks)) {
auto idx = i * block_size + j;
data_grad[idx] = out_grad * std::exp(data_in[idx] - offset);
}
}
}
};
struct LogSumExpRangeReducerDef {
template <typename T, class Context>
using Reducer = LogSumExpRangeReducer<T, Context>;
template <typename T, class Context>
using ReducerGradient = LogSumExpRangeReducerGradient<T, Context>;
static constexpr const char* name = "LogSumExp";
static constexpr const char* doc =
"LogSumExp computes the element-wise log of the sum of exponentials of "
"input slices. Operation doesn't change the shape of individual blocks.";
};
template <typename T, class Context>
class LogMeanExpRangeReducer;
template <typename T, class Context>
class LogMeanExpRangeReducerGradient;
template <typename T>
class LogMeanExpRangeReducer<T, CPUContext> {
public:
void operator()(
const int64_t block_size,
const int64_t blocks,
const T* in,
T* out,
CPUContext* /*context*/) {
for (const auto j : c10::irange(block_size)) {
T max_value = std::numeric_limits<T>::lowest();
for (const auto i : c10::irange(blocks)) {
max_value = std::max(max_value, in[i * block_size + j]);
}
T scaled_exp_sum = 0;
for (const auto i : c10::irange(blocks)) {
scaled_exp_sum += std::exp(in[i * block_size + j] - max_value);
}
scaled_exp_sum /= blocks;
*(out++) = std::log(scaled_exp_sum) + max_value;
}
}
};
template <typename T, class Context>
class LogMeanExpRangeReducerGradient {
public:
void operator()(
const int64_t block_size,
const int64_t blocks,
const T* segment_grad, // GO
T* data_grad, // GI
const T* data_in, // I
const T* data_out, // O
Context* /*context*/) {
for (const auto j : c10::irange(block_size)) {
const T out_grad = *(segment_grad++);
const T offset = *(data_out++);
for (const auto i : c10::irange(blocks)) {
auto idx = i * block_size + j;
data_grad[idx] = out_grad * std::exp(data_in[idx] - offset) / blocks;
}
}
}
};
struct LogMeanExpRangeReducerDef {
template <typename T, class Context>
using Reducer = LogMeanExpRangeReducer<T, Context>;
template <typename T, class Context>
using ReducerGradient = LogMeanExpRangeReducerGradient<T, Context>;
static constexpr const char* name = "LogMeanExp";
static constexpr const char* doc =
"LogMeanExp computes the element-wise log of the mean of exponentials of "
"input slices. Operation doesn't change the shape of individual blocks.";
};
template <typename T, class Context>
class MeanRangeReducer;
template <typename T, class Context>
class MeanRangeReducerGradient;
template <typename T>
class MeanRangeReducer<T, CPUContext> {
public:
void operator()(
const int64_t block_size,
const int64_t blocks,
const T* in,
T* out,
CPUContext* /*context*/) {
for (const auto j : c10::irange(block_size)) {
T avg_value = 0;
for (const auto i : c10::irange(blocks)) {
avg_value += in[i * block_size + j] / blocks;
}
*(out++) = avg_value;
}
}
};
template <typename T, class Context>
class MeanRangeReducerGradient {
public:
void operator()(
const int64_t block_size,
const int64_t blocks,
const T* segment_grad, // GO
T* data_grad, // GI
const T* /*data_in*/, // I
const T* /*data_out*/, // O
Context* /*context*/) {
const auto in_grad = 1.0 / blocks;
for (const auto j : c10::irange(block_size)) {
const T out_grad = *(segment_grad++);
for (const auto i : c10::irange(blocks)) {
auto idx = i * block_size + j;
data_grad[idx] = out_grad * in_grad;
}
}
}
};
struct MeanRangeReducerDef {
template <typename T, class Context>
using Reducer = MeanRangeReducer<T, Context>;
template <typename T, class Context>
using ReducerGradient = MeanRangeReducerGradient<T, Context>;
static constexpr const char* name = "Mean";
static constexpr const char* doc =
"Mean computation is done element-wise, so that each element of the "
"output slice corresponds to the average value of the respective "
"elements in the input slices. Operation doesn't change the shape of "
"individual blocks.";
};
template <typename T, class Context>
class MaxRangeReducer;
template <typename T, class Context>
class MaxRangeReducerGradient;
template <typename T>
class MaxRangeReducer<T, CPUContext> {
public:
void operator()(
const int64_t block_size,
const int64_t blocks,
const T* in,
T* out,
CPUContext* /*context*/) {
for (const auto j : c10::irange(block_size)) {
T max_value = std::numeric_limits<T>::lowest();
for (const auto i : c10::irange(blocks)) {
max_value = std::max(max_value, in[i * block_size + j]);
}
*(out++) = max_value;
}
}
};
template <typename T, class Context>
class MaxRangeReducerGradient {
public:
void operator()(
const int64_t block_size,
const int64_t blocks,
const T* segment_grad, // GO
T* data_grad, // GI
const T* data_in, // I
const T* data_out, // O
Context* /*context*/) {
std::memset(
static_cast<void*>(data_grad), 0, blocks * block_size * sizeof(T));
for (const auto j : c10::irange(block_size)) {
const T out_grad = *(segment_grad++);
const T out = data_out[j];
for (const auto i : c10::irange(blocks)) {
auto idx = i * block_size + j;
if (out == data_in[idx]) {
data_grad[idx] = out_grad;
}
}
}
}
};
struct MaxRangeReducerDef {
template <typename T, class Context>
using Reducer = MaxRangeReducer<T, Context>;
template <typename T, class Context>
using ReducerGradient = MaxRangeReducerGradient<T, Context>;
static constexpr const char* name = "Max";
static constexpr const char* doc =
"Max computation is done element-wise, so that each element of the "
"output slice corresponds to the max value of the respective "
"elements in the input slices. Operation doesn't change the shape of "
"individual blocks. This implementation imitates torch nn.Max operator. "
"If the maximum value occurs more than once, the operator will return "
"the first occurrence of value. When computing the gradient using the "
"backward propagation, the gradient input corresponding to the first "
"occurrence of the maximum value will be used.";
};
////////////////////////////////////////////////////////////////////////////////
// Incremental reducers: consume elements one by one
////////////////////////////////////////////////////////////////////////////////
// Base implementation, everything can be overwritten
class BaseReducer {
public:
static constexpr int kInputCount = 1;
struct Meta {
int64_t block_size;
vector<int64_t> block_shape;
bool first_dim;
explicit Meta(bool first = true) : first_dim(first) {}
void computeMeta(at::IntArrayRef dims, size_t skip_dims) {
first_dim ? block_shape.assign(dims.begin() + skip_dims, dims.end())
: block_shape.assign(dims.begin(), dims.end() - skip_dims);
block_size = first_dim ? size_from_dim_(skip_dims, dims)
: size_from_dim_(dims.size() - skip_dims, dims);
}
void observeInput(int input, const Tensor& value, int skip_dims) {
TORCH_DCHECK_EQ(0, input);
auto dims = value.sizes();
computeMeta(dims, skip_dims);
}
void appendOutputShape(vector<int64_t>* output_shape) {
output_shape->insert(
output_shape->end(), block_shape.begin(), block_shape.end());
}
vector<int64_t> getOutputShape(const TensorShape& in, int skip_dims) {
vector<int64_t> dims(in.dims().begin(), in.dims().end());
computeMeta(dims, skip_dims);
return block_shape;
}
};
template <int FixedSize>
void finish(const Meta& /*meta*/, CPUContext* /*context*/) {}
};
class BaseReducerGradient {
public:
// which of the original inputs are required for gradient computation
static constexpr std::array<int, 0> originalInputs() {
return std::array<int, 0>();
}
static constexpr bool computeLength() {
return false;
}
static int numAuxInputsWithGrads(const OperatorDef& /*def*/) {
return 0;
}
static bool requiresDataInput(const OperatorDef& /*def*/) {
return false;
}
// True if the backward op requires the output of the forward op.
static bool requiresForwardOutput() {
return false;
}
struct Meta {
int64_t block_size;
vector<int64_t> block_shape;
bool first_dim;
Meta(const Tensor& out_grad, int skip_dims, bool first_dim = true)
: first_dim(first_dim) {
auto dims = out_grad.sizes();
first_dim ? block_shape.assign(dims.begin() + skip_dims, dims.end())
: block_shape.assign(dims.begin(), dims.end() - skip_dims);
block_size = first_dim
? out_grad.size_from_dim(skip_dims)
: out_grad.size_from_dim(out_grad.dim() - skip_dims);
}
void observeOriginalInput(
int /*original_input*/,
const Tensor& /*value*/,
Tensor* /*input_grad*/, // optional grad to populate
int /*skip_dims*/) {}
void appendGradShape(vector<int64_t>* output_shape) {
output_shape->insert(
output_shape->end(), block_shape.begin(), block_shape.end());
}
};
};
// Put forward and backward in the same template?
template <typename T, class Context>
class SumReducer;
template <typename T, class Context>
class SumReducerGradient;
template <typename T>
class SumReducer<T, CPUContext> : public BaseReducer {
public:
using FixedDispatch = FixedValues<1>;
SumReducer(const Meta& meta, T* out, CPUContext* /*context*/)
: current_size_(0), out_(out) {
// add a wrapper in Context for it
if (meta.first_dim) {
memset(out, 0, sizeof(T) * meta.block_size);
}
}
template <int FixedSize>
void process(
const Meta& meta,
const T* in,
int64_t /*offset*/,
CPUContext* context) {
if (meta.first_dim) {
math::AxpyFixedSize<T, CPUContext, FixedSize>(
meta.block_size, 1, in, out_, context);
} else {
math::Sum<T, CPUContext>(
meta.block_size, in, out_ + current_size_++, context);
}
}
private:
int current_size_;
T* out_;
};
template <typename T, class Context>
class SumReducerGradient : public BaseReducerGradient {
public:
using FixedDispatch = FixedValues<1>;
SumReducerGradient(
const Meta& /*meta*/,
const T* s_grad,
CPUContext* /*context*/)
: s_grad_(s_grad) {}
template <int FixedSize>
void fillGrad(
const Meta& meta,
T* data_grad,
int64_t offset,
Context* context,
const int length) {
if (FixedSize == 1) { // static if
*data_grad = *s_grad_;
} else if (meta.first_dim) {
context->template CopySameDevice<T>(meta.block_size, s_grad_, data_grad);
} else {
math::Set<T, Context>(length, s_grad_[offset], data_grad, context);
}
}
private:
const T* s_grad_;
};
struct SumReducerDef {
template <typename T, class Context>
using Reducer = SumReducer<T, Context>;
template <typename T, class Context>
using ReducerGradient = SumReducerGradient<T, Context>;
static constexpr const char* name = "Sum";
static constexpr const char* doc =
"Summation is done element-wise across slices of the input tensor and "
"doesn't change the shape of the individual blocks.";
static void PopulateSchema(OpSchema& /*schema*/) {}
};
// Put forward and backward in the same template?
template <typename T, class Context>
class WeightedSumReducer;
template <typename T, class Context>
class WeightedSumReducerGradient;
template <typename T>
class WeightedSumReducer<T, CPUContext> : public BaseReducer {
public:
static constexpr int kInputCount = 2;
using FixedDispatch = FixedValues<1>;
struct Meta : BaseReducer::Meta {
const T* scalars;
bool first_dim;
explicit Meta(bool first = true) : first_dim(first) {}
void observeInput(int input, const Tensor& value, int skip_dims) {
if (input == 1) {
CAFFE_ENFORCE_EQ(
skip_dims, value.dim(), "SCALARS mustn't have extra dimensions");
scalars = value.data<T>();
return;
}
BaseReducer::Meta::observeInput(input, value, skip_dims);
}
};
WeightedSumReducer(const Meta& meta, T* out, CPUContext* /*context*/)
: out_(out) {
// do we have a wrapper for it?
memset(out, 0, sizeof(T) * meta.block_size);
}
template <int FixedSize>
void
process(const Meta& meta, const T* in, int64_t offset, CPUContext* context) {
CAFFE_ENFORCE(
meta.first_dim,
"WeightedSumReducer implemented only for "
"front dimensions reduction");
math::AxpyFixedSize<T, CPUContext, FixedSize>(
meta.block_size, meta.scalars[offset], in, out_, context);
}
private:
T* out_;
};
template <typename T, class Context>
class WeightedSumReducerGradient : public BaseReducerGradient {
public:
// which of the original inputs are required for gradient computation
static constexpr std::array<int, 1> originalInputs() {
return {{1}};
}
static int numAuxInputsWithGrads(const OperatorDef& def) {
return GetFlagArgument(def, "grad_on_weights");
}
static bool requiresDataInput(const OperatorDef& def) {
return numAuxInputsWithGrads(def) > 0;
}
using FixedDispatch = FixedValues<1>;
struct Meta : public BaseReducerGradient::Meta {
const T* scalars;
T* scalars_grad;
using BaseReducerGradient::Meta::Meta;
void observeOriginalInput(
int original_input,
const Tensor& value,
Tensor* input_grad, // optional grad to populate
int /*skip_dims*/) {
CAFFE_ENFORCE_EQ(1, original_input);
scalars = value.data<T>();
if (input_grad) {
input_grad->ResizeLike(value);
scalars_grad = input_grad->template mutable_data<T>();
}
}
};
WeightedSumReducerGradient(
const Meta& /*meta*/,
const T* s_grad,
CPUContext* /*context*/)
: s_grad_(s_grad) {}
template <int FixedSize>
void fillGrad(
const Meta& meta,
T* data_grad,
int64_t offset,
Context* context,
const int /*length*/) {
math::ScaleFixedSize<T, CPUContext, FixedSize>(
meta.block_size, meta.scalars[offset], s_grad_, data_grad, context);
}
// Special version which is called with the main input too, used only if
// additional input grad is requested
template <int FixedSize>
void fillGradWithMainInput(
const Meta& meta,
const T* data,
T* data_grad,
int64_t offset,
Context* context,
const int /*length*/) {
math::ScaleFixedSize<T, CPUContext, FixedSize>(
meta.block_size, meta.scalars[offset], s_grad_, data_grad, context);
math::Dot(
meta.block_size, s_grad_, data, meta.scalars_grad + offset, context);
}
private:
const T* s_grad_;
};
struct WeightedSumReducerDef {
template <typename T, class Context>
using Reducer = WeightedSumReducer<T, Context>;
template <typename T, class Context>
using ReducerGradient = WeightedSumReducerGradient<T, Context>;
static constexpr const char* name = "WeightedSum";
static constexpr const char* doc =
"Input slices are first scaled by SCALARS and then summed element-wise. "
"It doesn't change the shape of the individual blocks.";
static void PopulateSchema(OpSchema& schema) {
schema.Input(0, "DATA", "Input tensor for the summation");
schema.Input(
1,
"SCALARS",
"Scalar multipliers for the input slices. Must be a vector with the "
"length matching the number of slices");
schema.Arg(
"grad_on_weights",
"Produce also gradient for `weights`. For now it's only supported in "
"`Lengths`-based operators");
}
};
template <typename T, class Context>
class MeanReducer;
template <typename T, class Context>
class MeanReducerGradient;
template <typename T>
class MeanReducer<T, CPUContext> : public BaseReducer {
public:
using FixedDispatch = FixedValues<1>;
MeanReducer(const Meta& meta, T* out, CPUContext* /*context*/)
: out_(out), current_size_(0) {
if (meta.first_dim) {
memset(out, 0, sizeof(T) * meta.block_size);
}
}
template <int FixedSize>
void process(
const Meta& meta,
const T* in,
int64_t /*offset*/,
CPUContext* context) {
if (meta.first_dim) {
math::AxpyFixedSize<T, CPUContext, FixedSize>(
meta.block_size, 1, in, out_, context);
} else {
math::Sum<T, CPUContext>(
meta.block_size, in, out_ + current_size_, context);
}
current_size_++;
}
template <int FixedSize>
void finish(const Meta& meta, CPUContext* context) {
if (meta.first_dim) {
if (current_size_ > 0) {
math::ScaleFixedSize<T, CPUContext, FixedSize>(
meta.block_size, 1.0 / current_size_, out_, out_, context);
}
} else {
math::ScaleFixedSize<T, CPUContext, FixedSize>(
current_size_, 1.0 / meta.block_size, out_, out_, context);
}
}
private:
T* out_;
int current_size_;
};
template <typename T, class Context>
class MeanReducerGradient : public BaseReducerGradient {
public:
static constexpr bool computeLength() {
return true;
}
using FixedDispatch = FixedValues<1>;
MeanReducerGradient(
const Meta& /*meta*/,
const T* s_grad,
CPUContext* /*context*/)
: s_grad_(s_grad) {}
template <int FixedSize>
void fillGrad(
const Meta& meta,
T* data_grad,
int64_t offset,
Context* context,
const int length) {
CAFFE_ENFORCE_GT(length, 0, "Segment length must be > 0");
if (meta.first_dim) {
math::ScaleFixedSize<T, CPUContext, FixedSize>(
meta.block_size, 1.0 / length, s_grad_, data_grad, context);
} else {
math::Set<T, CPUContext>(
length, s_grad_[offset] * 1.0f / length, data_grad, context);
}
}
private:
const T* s_grad_;
};
struct MeanReducerDef {
template <typename T, class Context>
using Reducer = MeanReducer<T, Context>;
template <typename T, class Context>
using ReducerGradient = MeanReducerGradient<T, Context>;
static constexpr const char* name = "Mean";
static constexpr const char* doc =
"Mean computes the element-wise mean of the input slices. "
"Operation doesn't change the shape of the individual blocks.";
static void PopulateSchema(OpSchema& /*schema*/) {}
};
template <typename T, class Context>
class MaxReducer;
template <typename T, class Context>
class MaxReducerGradient;
template <typename T>
class MaxReducer<T, CPUContext> : public BaseReducer {
public:
using FixedDispatch = FixedValues<1>;
MaxReducer(const Meta& meta, T* out, CPUContext* /*context*/)
: out_(out), current_size_(0) {
// add a wrapper in Context for it
memset(out, 0, sizeof(T) * meta.block_size);
}
template <int FixedSize>
void process(
const Meta& meta,
const T* in,
int64_t /*offset*/,
CPUContext* context) {
CAFFE_ENFORCE(
meta.first_dim,
"MaxReducer implemented only for front dimensions reduction");
if (current_size_ > 0) {
EigenVectorMap<T> output_vec(out_, meta.block_size);
output_vec =
output_vec.cwiseMax(ConstEigenVectorMap<T>(in, meta.block_size));
} else {
memcpy(out_, in, sizeof(T) * meta.block_size);
}
++current_size_;
}
private:
T* out_;
int current_size_;
};
template <typename T, class Context>
class MaxReducerGradient : public BaseReducerGradient {
public:
static bool requiresDataInput(const OperatorDef& /*def*/) {
return true;
}
static bool requiresForwardOutput() {
return true;
}
using FixedDispatch = FixedValues<1>;
MaxReducerGradient(
const Meta& /*meta*/,
const T* s_grad,
CPUContext* /*context*/)
: s_grad_(s_grad) {}
template <int FixedSize>
void fillGradWithMainInputAndForwardOutput(
const Meta& meta,
const T* data,
T* data_grad,
const T* forward_output,
int64_t /*offset*/,
Context* /*context*/,
const int /*length*/) {
for (const auto i : c10::irange(meta.block_size)) {
data_grad[i] = data[i] == forward_output[i] ? s_grad_[i] : 0;
}
}
private:
const T* s_grad_;
};
struct MaxReducerDef {
template <typename T, class Context>
using Reducer = MaxReducer<T, Context>;
template <typename T, class Context>
using ReducerGradient = MaxReducerGradient<T, Context>;
static constexpr const char* name = "Max";
static constexpr const char* doc =
"Max computes the element-wise max of the input slices. "
"Operation doesn't change the shape of the individual blocks.";
static void PopulateSchema(OpSchema& /*schema*/) {}
};
} // namespace caffe2
#endif // CAFFE2_OPERATORS_RECUDER_FUNCTORS_H_