forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathreduction_ops.h
192 lines (160 loc) · 5.84 KB
/
reduction_ops.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
#ifndef CAFFE2_OPERATORS_REDUCTION_OPS_H_
#define CAFFE2_OPERATORS_REDUCTION_OPS_H_
#include "caffe2/core/common_omp.h"
#include "caffe2/core/context.h"
#include "caffe2/core/logging.h"
#include "caffe2/core/operator.h"
#include "caffe2/utils/math.h"
#include "c10/util/irange.h"
namespace caffe2 {
template <typename T, class Context>
class SumElementsOp : public Operator<Context> {
public:
USE_OPERATOR_CONTEXT_FUNCTIONS;
explicit SumElementsOp(const OperatorDef& operator_def, Workspace* ws)
: Operator<Context>(operator_def, ws),
average_(this->template GetSingleArgument<bool>("average", false)) {}
explicit SumElementsOp(const OperatorDef& operator_def, Workspace* ws, bool average)
: Operator<Context>(operator_def, ws), average_(average) {}
#if !defined(CAFFE2_IS_XPLAT_BUILD) && !defined(C10_MOBILE)
explicit SumElementsOp(const c10::FunctionSchema& schema, std::vector<c10::IValue> inputs, std::vector<c10::IValue*> outputs)
: Operator<Context>(schema, std::move(inputs), std::move(outputs)),
average_(this->template GetSingleArgument<bool>("average", false)) {}
explicit SumElementsOp(const c10::FunctionSchema& schema, std::vector<c10::IValue> inputs, std::vector<c10::IValue*> outputs, bool average)
: Operator<Context>(schema, std::move(inputs), std::move(outputs)), average_(average) {}
#endif
~SumElementsOp() {}
bool RunOnDevice() override {
auto& X = Input(0);
auto* sum = Output(0, vector<int64_t>(), at::dtype<T>());
T* data = sum->template mutable_data<T>();
math::Sum<T, Context>(
X.numel(), X.template data<T>(), data, &context_, &scratch_);
if (average_ && X.numel() > 0) {
math::Scale<float, T, Context>(
1,
static_cast<T>(1.) / X.numel(),
sum->template data<T>(),
data,
&context_);
}
return true;
}
private:
bool average_;
Tensor scratch_{Context::GetDeviceType()};
};
template <typename T, class Context>
class SumElementsIntOp : public Operator<Context> {
public:
USE_OPERATOR_CONTEXT_FUNCTIONS;
template <class... Args>
explicit SumElementsIntOp(Args&&... args)
: Operator<Context>(std::forward<Args>(args)...) {}
~SumElementsIntOp() {}
bool RunOnDevice() override {
auto& X = Input(0);
auto* sum = Output(0, vector<int64_t>(), at::dtype<T>());
T* data = sum->template mutable_data<T>();
math::Sum<T, Context>(
X.numel(), X.template data<T>(), data, &context_, &scratch_);
return true;
}
private:
Tensor scratch_{Context::GetDeviceType()};
};
template <typename T, class Context>
class SumElementsGradientOp : public Operator<Context> {
public:
USE_OPERATOR_CONTEXT_FUNCTIONS;
explicit SumElementsGradientOp(const OperatorDef& operator_def, Workspace* ws)
: Operator<Context>(operator_def, ws),
average_(this->template GetSingleArgument<bool>("average", false)) {}
explicit SumElementsGradientOp(const OperatorDef& operator_def, Workspace* ws, bool average)
: Operator<Context>(operator_def, ws), average_(average) {}
#if !defined(CAFFE2_IS_XPLAT_BUILD) && !defined(C10_MOBILE)
explicit SumElementsGradientOp(const c10::FunctionSchema& schema, std::vector<c10::IValue> inputs, std::vector<c10::IValue*> outputs)
: Operator<Context>(schema, std::move(inputs), std::move(outputs)),
average_(this->template GetSingleArgument<bool>("average", false)) {}
explicit SumElementsGradientOp(const c10::FunctionSchema& schema, std::vector<c10::IValue> inputs, std::vector<c10::IValue*> outputs, bool average)
: Operator<Context>(schema, std::move(inputs), std::move(outputs)), average_(average) {}
#endif
~SumElementsGradientOp() {}
bool RunOnDevice() override;
private:
bool average_;
};
template <class Context>
class SumSqrElementsOp : public Operator<Context> {
public:
USE_SIMPLE_CTOR_DTOR(SumSqrElementsOp)
USE_OPERATOR_CONTEXT_FUNCTIONS;
bool RunOnDevice() override {
return DispatchHelper<TensorTypes<float, double>>::call(this, Input(0));
}
template <typename T>
bool DoRunWithType() {
bool average = this->template GetSingleArgument<bool>("average", false);
auto& X = Input(0);
auto* sum = Output(0, vector<int64_t>(), at::dtype<T>());
math::SumSqr<T, Context>(
X.numel(),
X.template data<T>(),
sum->template mutable_data<T>(),
&context_,
&scratch_);
if (average && X.numel() > 0) {
math::Scale<float, T, Context>(
1,
float(1.) / X.numel(),
sum->template data<T>(),
sum->template mutable_data<T>(),
&context_);
}
return true;
}
private:
Tensor scratch_{Context::GetDeviceType()};
};
template <typename T, class Context, bool ROWWISE>
class MaxReductionOp : public Operator<Context> {
public:
USE_SIMPLE_CTOR_DTOR(MaxReductionOp)
USE_OPERATOR_CONTEXT_FUNCTIONS;
bool RunOnDevice() override {
auto& X = Input(0);
CAFFE_ENFORCE_EQ(X.dim(), 3);
const int batch_size = X.dim32(0);
const int M = X.dim32(1);
const int N = X.dim32(2);
auto* Y = Output(0, {batch_size, ROWWISE ? M : N}, at::dtype<T>());
if (ROWWISE) {
math::RowwiseMax<T, Context>(
batch_size * M,
N,
X.template data<T>(),
Y->template mutable_data<T>(),
&context_);
} else {
const int input_size = N * M;
for (const auto i : c10::irange(batch_size)) {
math::ColwiseMax<T, Context>(
M,
N,
X.template data<T>() + i * input_size,
Y->template mutable_data<T>() + i * N,
&context_);
}
}
return true;
}
};
template <typename T, class Context, bool ROWWISE>
class MaxReductionGradientOp : public Operator<Context> {
public:
USE_SIMPLE_CTOR_DTOR(MaxReductionGradientOp)
USE_OPERATOR_CONTEXT_FUNCTIONS;
bool RunOnDevice() override;
};
} // namespace caffe2
#endif