forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathroi_align_op.cc
314 lines (288 loc) · 10.5 KB
/
roi_align_op.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
#include "caffe2/operators/roi_align_op.h"
#include <vector>
#include "caffe2/utils/eigen_utils.h"
#include "caffe2/utils/math.h"
namespace caffe2 {
namespace {
template <typename T>
struct BilinearInterpolationParam {
int64_t p1;
int64_t p2;
int64_t p3;
int64_t p4;
T w1;
T w2;
T w3;
T w4;
};
template <typename T>
std::vector<BilinearInterpolationParam<T>> MakeBilinearInterpolationParams(
int64_t H,
int64_t W,
int64_t pooled_h,
int64_t pooled_w,
T bin_size_h,
T bin_size_w,
int64_t bin_grid_h,
int64_t bin_grid_w,
T roi_start_h,
T roi_start_w) {
std::vector<BilinearInterpolationParam<T>> params(
pooled_h * pooled_w * bin_grid_h * bin_grid_w);
const T ch = bin_size_h / static_cast<T>(bin_grid_h);
const T cw = bin_size_w / static_cast<T>(bin_grid_w);
int64_t cnt = 0;
for (int64_t ph = 0; ph < pooled_h; ++ph) {
for (int64_t pw = 0; pw < pooled_w; ++pw) {
for (int64_t iy = 0; iy < bin_grid_h; ++iy) {
const T yy = roi_start_h + static_cast<T>(ph) * bin_size_h +
(static_cast<T>(iy) + T(0.5)) * ch;
if (yy < T(-1) || yy > static_cast<T>(H)) {
std::memset(params.data() + cnt, 0, bin_grid_w * sizeof(params[0]));
cnt += bin_grid_w;
continue;
}
for (int64_t ix = 0; ix < bin_grid_w; ++ix) {
const T xx = roi_start_w + pw * bin_size_w +
(static_cast<T>(ix) + T(0.5f)) * cw;
BilinearInterpolationParam<T>& param = params[cnt++];
if (xx < T(-1) || xx > static_cast<T>(W)) {
std::memset(¶m, 0, sizeof(param));
continue;
}
const T y = std::min(std::max(yy, T(0)), static_cast<T>(H - 1));
const T x = std::min(std::max(xx, T(0)), static_cast<T>(W - 1));
const int64_t yl = static_cast<int64_t>(std::floor(y));
const int64_t xl = static_cast<int64_t>(std::floor(x));
const int64_t yh = std::min(yl + 1, H - 1);
const int64_t xh = std::min(xl + 1, W - 1);
const T py = y - static_cast<T>(yl);
const T px = x - static_cast<T>(xl);
const T qy = T(1) - py;
const T qx = T(1) - px;
param.p1 = yl * W + xl;
param.p2 = yl * W + xh;
param.p3 = yh * W + xl;
param.p4 = yh * W + xh;
param.w1 = qy * qx;
param.w2 = qy * px;
param.w3 = py * qx;
param.w4 = py * px;
}
}
}
}
return params;
}
} // namespace
template <>
C10_EXPORT bool RoIAlignOp<float, CPUContext>::RunOnDeviceWithOrderNCHW(
int64_t N,
int64_t C,
int64_t H,
int64_t W,
int64_t roi_cols,
const float* X,
const float* R,
float* Y) {
DCHECK(roi_cols == 4 || roi_cols == 5);
const float roi_offset = aligned_ ? 0.5f : 0.0f;
#ifdef _OPENMP
#pragma omp parallel for
#endif
for (int64_t n = 0; n < N; ++n) {
const int64_t roi_batch_idx = roi_cols == 4 ? 0 : R[n * roi_cols];
const float* X_ptr = X + roi_batch_idx * C * H * W;
const float* R_ptr = R + n * roi_cols + (roi_cols == 5);
float* Y_ptr = Y + n * C * pooled_h_ * pooled_w_;
// Do not using rounding; this implementation detail is critical
const float roi_w1 = R_ptr[0] * spatial_scale_ - roi_offset;
const float roi_h1 = R_ptr[1] * spatial_scale_ - roi_offset;
const float roi_w2 = R_ptr[2] * spatial_scale_ - roi_offset;
const float roi_h2 = R_ptr[3] * spatial_scale_ - roi_offset;
float roi_w = roi_w2 - roi_w1;
float roi_h = roi_h2 - roi_h1;
if (aligned_) {
CAFFE_ENFORCE(
roi_w >= 0.0f && roi_h >= 0.0f,
"ROIs in ROIAlign do not have non-negative size!");
} else { // backward compatibility
// Force malformed ROIs to be 1x1
roi_w = std::max(roi_w, 1.0f);
roi_h = std::max(roi_h, 1.0f);
}
const float bin_size_h = roi_h / static_cast<float>(pooled_h_);
const float bin_size_w = roi_w / static_cast<float>(pooled_w_);
// We use roi_bin_grid to sample the grid and mimic integral
const int64_t bin_grid_h = (sampling_ratio_ > 0)
? sampling_ratio_
: static_cast<int64_t>(ceil(roi_h / static_cast<float>(pooled_h_)));
const int64_t bin_grid_w = (sampling_ratio_ > 0)
? sampling_ratio_
: static_cast<int64_t>(ceil(roi_w / static_cast<float>(pooled_w_)));
const std::vector<BilinearInterpolationParam<float>> params =
MakeBilinearInterpolationParams(
H,
W,
pooled_h_,
pooled_w_,
bin_size_h,
bin_size_w,
bin_grid_h,
bin_grid_w,
roi_h1,
roi_w1);
const float scale = 1.0f / static_cast<float>(bin_grid_h * bin_grid_w);
for (int64_t c = 0; c < C; ++c) {
int64_t cnt = 0;
for (int64_t ph = 0; ph < pooled_h_; ++ph) {
for (int64_t pw = 0; pw < pooled_w_; ++pw) {
float sum = 0.0f;
for (int64_t iy = 0; iy < bin_grid_h; ++iy) {
for (int64_t ix = 0; ix < bin_grid_w; ++ix) {
const BilinearInterpolationParam<float>& param = params[cnt++];
sum += param.w1 * X_ptr[param.p1] + param.w2 * X_ptr[param.p2] +
param.w3 * X_ptr[param.p3] + param.w4 * X_ptr[param.p4];
}
}
Y_ptr[ph * pooled_w_ + pw] = sum * scale;
}
}
X_ptr += H * W;
Y_ptr += pooled_h_ * pooled_w_;
}
}
return true;
}
template <>
C10_EXPORT bool RoIAlignOp<float, CPUContext>::RunOnDeviceWithOrderNHWC(
int64_t N,
int64_t C,
int64_t H,
int64_t W,
int64_t roi_cols,
const float* X,
const float* R,
float* Y) {
DCHECK(roi_cols == 4 || roi_cols == 5);
const float roi_offset = aligned_ ? 0.5f : 0.0f;
#ifdef _OPENMP
#pragma omp parallel for
#endif
for (int64_t n = 0; n < N; ++n) {
const int64_t roi_batch_idx = roi_cols == 4 ? 0 : R[n * roi_cols];
const float* X_ptr = X + roi_batch_idx * C * H * W;
const float* R_ptr = R + n * roi_cols + (roi_cols == 5);
float* Y_ptr = Y + n * C * pooled_h_ * pooled_w_;
// Do not using rounding; this implementation detail is critical
const float roi_w1 = R_ptr[0] * spatial_scale_ - roi_offset;
const float roi_h1 = R_ptr[1] * spatial_scale_ - roi_offset;
const float roi_w2 = R_ptr[2] * spatial_scale_ - roi_offset;
const float roi_h2 = R_ptr[3] * spatial_scale_ - roi_offset;
float roi_w = roi_w2 - roi_w1;
float roi_h = roi_h2 - roi_h1;
if (aligned_) {
CAFFE_ENFORCE(
roi_w >= 0.0f && roi_h >= 0.0f,
"ROIs in ROIAlign do not have non-negative size!");
} else { // backward compatibility
// Force malformed ROIs to be 1x1
roi_w = std::max(roi_w, 1.0f);
roi_h = std::max(roi_h, 1.0f);
}
const float bin_size_h = roi_h / static_cast<float>(pooled_h_);
const float bin_size_w = roi_w / static_cast<float>(pooled_w_);
// We use roi_bin_grid to sample the grid and mimic integral
const int64_t bin_grid_h = (sampling_ratio_ > 0)
? sampling_ratio_
: static_cast<int64_t>(ceil(roi_h / static_cast<float>(pooled_h_)));
const int64_t bin_grid_w = (sampling_ratio_ > 0)
? sampling_ratio_
: static_cast<int64_t>(ceil(roi_w / static_cast<float>(pooled_w_)));
const std::vector<BilinearInterpolationParam<float>> params =
MakeBilinearInterpolationParams(
H,
W,
pooled_h_,
pooled_w_,
bin_size_h,
bin_size_w,
bin_grid_h,
bin_grid_w,
roi_h1,
roi_w1);
const float scale = 1.0f / static_cast<float>(bin_grid_h * bin_grid_w);
int64_t cnt = 0;
for (int64_t ph = 0; ph < pooled_h_; ++ph) {
for (int64_t pw = 0; pw < pooled_w_; ++pw) {
EigenVectorArrayMap<float> Y_arr(Y_ptr + (ph * pooled_w_ + pw) * C, C);
Y_arr.setZero();
for (int64_t iy = 0; iy < bin_grid_h; ++iy) {
for (int64_t ix = 0; ix < bin_grid_w; ++ix) {
const BilinearInterpolationParam<float>& param = params[cnt++];
ConstEigenVectorArrayMap<float> x1_arr(X_ptr + param.p1 * C, C);
ConstEigenVectorArrayMap<float> x2_arr(X_ptr + param.p2 * C, C);
ConstEigenVectorArrayMap<float> x3_arr(X_ptr + param.p3 * C, C);
ConstEigenVectorArrayMap<float> x4_arr(X_ptr + param.p4 * C, C);
Y_arr += param.w1 * x1_arr + param.w2 * x2_arr + param.w3 * x3_arr +
param.w4 * x4_arr;
}
}
Y_arr *= scale;
}
}
}
return true;
}
REGISTER_CPU_OPERATOR(RoIAlign, RoIAlignOp<float, CPUContext>);
// Input: X, rois; Output: Y
OPERATOR_SCHEMA(RoIAlign)
.NumInputs(2)
.NumOutputs(1)
.SetDoc(R"DOC(
Region of Interest (RoI) align operation as used in Mask R-CNN.
)DOC")
.Arg(
"spatial_scale",
"(float) default 1.0; Spatial scale of the input feature map X "
"relative to the input image. E.g., 0.0625 if X has a stride of 16 "
"w.r.t. the input image.")
.Arg("pooled_h", "(int) default 1; Pooled output Y's height.")
.Arg("pooled_w", "(int) default 1; Pooled output Y's width.")
.Arg(
"sampling_ratio",
"(int) default -1; number of sampling points in the interpolation grid "
"used to compute the output value of each pooled output bin. If > 0, "
"then exactly sampling_ratio x sampling_ratio grid points are used. If "
"<= 0, then an adaptive number of grid points are used (computed as "
"ceil(roi_width / pooled_w), and likewise for height).")
.Input(0, "X", "4D feature map input of shape (N, C, H, W).")
.Input(
1,
"RoIs",
"2D input of shape (R, 4 or 5) specifying R RoIs "
"representing: batch index in [0, N - 1], x1, y1, x2, y2. The RoI "
"coordinates are in the coordinate system of the input image. For "
"inputs corresponding to a single image, batch index can be excluded "
"to have just 4 columns.")
.Output(
0,
"Y",
"4D output of shape (R, C, pooled_h, pooled_w). The r-th batch element "
"is a pooled feature map cooresponding to the r-th RoI.");
template <typename T>
using RoIAlignCPUOp = caffe2::RoIAlignOp<T, CPUContext>;
} // namespace caffe2
C10_EXPORT_CAFFE2_OP_TO_C10_CPU(
RoIAlign,
"_caffe2::RoIAlign("
" Tensor features,"
" Tensor rois,"
" str order,"
" float spatial_scale,"
" int pooled_h,"
" int pooled_w,"
" int sampling_ratio,"
" bool aligned"
") -> Tensor",
caffe2::RoIAlignCPUOp<float>);