forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathroi_align_op_gpu_test.cc
270 lines (240 loc) · 8.79 KB
/
roi_align_op_gpu_test.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
#include "caffe2/operators/roi_align_op.h"
#include "caffe2/utils/eigen_utils.h"
#include <c10/test/util/Macros.h>
#include "caffe2/core/context_gpu.h"
#include "caffe2/core/flags.h"
#include "caffe2/utils/eigen_utils.h"
#include "caffe2/utils/math.h"
#include "gtest/gtest.h"
namespace caffe2 {
namespace {
template <class Context>
void AddConstInput(
const vector<int64_t>& shape,
const float value,
const string& name,
Context* context,
Workspace* ws) {
Blob* blob = ws->CreateBlob(name);
auto* tensor = BlobGetMutableTensor(blob, Context::GetDeviceType());
tensor->Resize(shape);
math::Set<float, Context>(
tensor->size(), value, tensor->template mutable_data<float>(), context);
return;
}
template <class Context>
void AddInput(
const vector<int64_t>& shape,
const vector<float>& values,
const string& name,
Workspace* ws);
template <>
void AddInput<CPUContext>(
const vector<int64_t>& shape,
const vector<float>& values,
const string& name,
Workspace* ws) {
Blob* blob = ws->CreateBlob(name);
auto* tensor = BlobGetMutableTensor(blob, CPU);
tensor->Resize(shape);
EigenVectorMap<float> tensor_vec(
tensor->template mutable_data<float>(), tensor->numel());
tensor_vec.array() = utils::AsEArrXt(values);
}
template <>
void AddInput<CUDAContext>(
const vector<int64_t>& shape,
const vector<float>& values,
const string& name,
Workspace* ws) {
Tensor tmp(shape, CPU);
EigenVectorMap<float> tmp_vec(tmp.mutable_data<float>(), tmp.numel());
tmp_vec.array() = utils::AsEArrXt(values);
Blob* blob = ws->CreateBlob(name);
auto* tensor = BlobGetMutableTensor(blob, CUDA);
tensor->CopyFrom(tmp);
}
template <class Context>
DeviceType GetDeviceType() {
return CPU;
}
template <>
DeviceType GetDeviceType<CUDAContext>() {
return CUDA;
}
int randInt(int a, int b) {
static std::random_device rd;
static std::mt19937 gen(rd());
return std::uniform_int_distribution<int>(a, b)(gen);
}
struct TestParams {
int N;
int C;
int H;
int W;
int n_rois;
vector<float> rois_array;
};
template <class Context>
void CreateAndRun(
TensorCPU* outResult,
const string& order,
const TestParams& test_params,
bool random_test) {
Workspace ws;
Context context;
if (random_test) {
const int N = test_params.N;
const int C = test_params.C;
const int H = test_params.H;
const int W = test_params.W;
vector<float> features(N * C * H * W);
std::iota(features.begin(), features.end(), 0);
// utils::AsEArrXt(features) /= features.size();
AddInput<Context>(vector<int64_t>{N, C, H, W}, features, "X", &ws);
const int n_rois = test_params.n_rois;
const vector<float>& rois = test_params.rois_array;
AddInput<Context>(vector<int64_t>{n_rois, 5}, rois, "R", &ws);
} else {
const int N = 2;
const int C = 3;
const int H = 100;
const int W = 110;
vector<float> features(N * C * H * W);
std::iota(features.begin(), features.end(), 0);
// utils::AsEArrXt(features) /= features.size();
AddInput<Context>(vector<int64_t>{N, C, H, W}, features, "X", &ws);
vector<float> rois{0, 0, 0, 79, 59,
0, 0, 5.0005703f, 52.63237f, 43.69501495f,
0, 24.13628387f, 7.51243401f, 79, 46.06628418f,
0, 0, 7.50924301f, 68.47792816f, 46.03357315f,
0, 0, 23.09477997f, 51.61448669f, 59,
0, 0, 39.52141571f, 52.44710541f, 59,
0, 23.57396317f, 29.98791885f, 79, 59,
0, 0, 41.90219116f, 79, 59,
0, 0, 23.30098343f, 79, 59};
AddInput<Context>(vector<int64_t>{9, 5}, rois, "R", &ws);
}
std::vector<unique_ptr<OperatorBase>> ops;
EXPECT_TRUE(order == "NCHW" || order == "NHWC");
if (order == "NCHW") {
OperatorDef def;
def.set_name("test");
def.set_type("RoIAlign");
def.add_input("X");
def.add_input("R");
def.add_output("Y");
def.mutable_device_option()->set_device_type(
TypeToProto(GetDeviceType<Context>()));
def.add_arg()->CopyFrom(MakeArgument("spatial_scale", 1.0f / 16.0f));
def.add_arg()->CopyFrom(MakeArgument("pooled_h", 6));
def.add_arg()->CopyFrom(MakeArgument("pooled_w", 8));
def.add_arg()->CopyFrom(MakeArgument("sampling_ratio", 2));
ops.push_back(CreateOperator(def, &ws));
} else if (order == "NHWC") {
OperatorDef def_roialign;
def_roialign.set_name("test");
def_roialign.set_type("RoIAlign");
def_roialign.add_input("X_NHWC");
def_roialign.add_input("R");
def_roialign.add_output("Y_NHWC");
def_roialign.mutable_device_option()->set_device_type(
TypeToProto(GetDeviceType<Context>()));
def_roialign.add_arg()->CopyFrom(
MakeArgument("spatial_scale", 1.0f / 16.0f));
def_roialign.add_arg()->CopyFrom(MakeArgument("pooled_h", 6));
def_roialign.add_arg()->CopyFrom(MakeArgument("pooled_w", 8));
def_roialign.add_arg()->CopyFrom(MakeArgument("sampling_ratio", 2));
def_roialign.add_arg()->CopyFrom(MakeArgument<string>("order", "NHWC"));
OperatorDef def_x;
def_x.set_name("test_x");
def_x.set_type("NCHW2NHWC");
def_x.add_input("X");
def_x.add_output("X_NHWC");
def_x.mutable_device_option()->set_device_type(
TypeToProto(GetDeviceType<Context>()));
OperatorDef def_y;
def_y.set_name("test_y");
def_y.set_type("NHWC2NCHW");
def_y.add_input("Y_NHWC");
def_y.add_output("Y");
def_y.mutable_device_option()->set_device_type(
TypeToProto(GetDeviceType<Context>()));
ops.push_back(CreateOperator(def_x, &ws));
ops.push_back(CreateOperator(def_roialign, &ws));
ops.push_back(CreateOperator(def_y, &ws));
}
for (auto const& op : ops) {
EXPECT_NE(nullptr, op.get());
EXPECT_TRUE(op->Run());
}
Blob* Y_blob = ws.GetBlob("Y");
EXPECT_NE(nullptr, Y_blob);
auto& Y = Y_blob->Get<Tensor>();
outResult->CopyFrom(Y);
}
} // namespace
TEST(RoiAlignTest, CheckCPUGPUEqual) {
if (!caffe2::HasCudaGPU())
return;
Tensor y_cpu(CPU);
Tensor y_gpu(CPU);
Tensor y_cpu_nhwc(CPU);
// tests using FAIR example
{
TestParams test_params;
CreateAndRun<CPUContext>(&y_cpu, "NCHW", test_params, false);
CreateAndRun<CUDAContext>(&y_gpu, "NCHW", test_params, false);
CreateAndRun<CPUContext>(&y_cpu_nhwc, "NHWC", test_params, false);
EXPECT_EQ(y_cpu.sizes(), y_gpu.sizes());
EXPECT_EQ(y_cpu.sizes(), y_cpu_nhwc.sizes());
ConstEigenVectorMap<float> y_cpu_vec(y_cpu.data<float>(), y_cpu.numel());
ConstEigenVectorMap<float> y_gpu_vec(y_gpu.data<float>(), y_gpu.numel());
ConstEigenVectorMap<float> y_cpu_nhwc_vec(
y_cpu_nhwc.data<float>(), y_cpu_nhwc.numel());
int max_diff_idx = -1;
(y_cpu_vec - y_gpu_vec).cwiseAbs().maxCoeff(&max_diff_idx);
EXPECT_FLOAT_EQ(y_cpu_vec[max_diff_idx], y_gpu_vec[max_diff_idx]);
max_diff_idx = -1;
(y_cpu_vec - y_cpu_nhwc_vec).cwiseAbs().maxCoeff(&max_diff_idx);
EXPECT_FLOAT_EQ(y_cpu_vec[max_diff_idx], y_cpu_nhwc_vec[max_diff_idx]);
}
// random tests
const int random_test_numbers = 100;
for (int i = 0; i < random_test_numbers; i++) {
const int N = randInt(1, 5);
const int C = randInt(1, 5);
const int H = randInt(1, 50);
const int W = randInt(1, 50);
const int n_rois = randInt(1, 30);
vector<float> rois_array;
for (int n = 0; n < n_rois; n++) {
rois_array.push_back(randInt(0, N - 1));
int w1 = randInt(-20, W + 20);
int w2 = randInt(-20, W + 20);
int h1 = randInt(-20, H + 20);
int h2 = randInt(-20, H + 20);
rois_array.push_back(std::min(w1, w2));
rois_array.push_back(std::max(h1, h2));
rois_array.push_back(std::min(w1, w2));
rois_array.push_back(std::max(h1, h2));
}
TestParams test_params{N, C, H, W, n_rois, rois_array};
CreateAndRun<CPUContext>(&y_cpu, "NCHW", test_params, true);
CreateAndRun<CUDAContext>(&y_gpu, "NCHW", test_params, true);
CreateAndRun<CPUContext>(&y_cpu_nhwc, "NHWC", test_params, true);
EXPECT_EQ(y_cpu.sizes(), y_gpu.sizes());
EXPECT_EQ(y_cpu.sizes(), y_cpu_nhwc.sizes());
ConstEigenVectorMap<float> y_cpu_vec(y_cpu.data<float>(), y_cpu.numel());
ConstEigenVectorMap<float> y_gpu_vec(y_gpu.data<float>(), y_gpu.numel());
ConstEigenVectorMap<float> y_cpu_nhwc_vec(
y_cpu_nhwc.data<float>(), y_cpu_nhwc.numel());
int max_diff_idx = -1;
(y_cpu_vec - y_gpu_vec).cwiseAbs().maxCoeff(&max_diff_idx);
EXPECT_NEAR(y_cpu_vec[max_diff_idx], y_gpu_vec[max_diff_idx], 1e-1);
max_diff_idx = -1;
(y_cpu_vec - y_cpu_nhwc_vec).cwiseAbs().maxCoeff(&max_diff_idx);
EXPECT_FLOAT_EQ(y_cpu_vec[max_diff_idx], y_cpu_nhwc_vec[max_diff_idx]);
}
}
} // namespace caffe2