forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathsoftmax_with_loss_op.cc
400 lines (329 loc) · 13.1 KB
/
softmax_with_loss_op.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
#include "caffe2/operators/softmax_with_loss_op.h"
#include <vector>
#include "caffe2/operators/softmax_utils.h"
namespace caffe2 {
REGISTER_CPU_OPERATOR(SoftmaxWithLoss, SoftmaxWithLossOp<float, CPUContext>);
REGISTER_CPU_OPERATOR(
SoftmaxWithLossGradient,
SoftmaxWithLossGradientOp<float, CPUContext>);
// Input: X (logits), T (labels); Output: P (probs), Y
OPERATOR_SCHEMA(SoftmaxWithLoss)
.NumInputs(2, 3)
.NumOutputs({2, 3})
.TensorInferenceFunction([](const OperatorDef& def,
const vector<TensorShape>& in) {
ArgumentHelper helper(def);
auto axis = helper.GetSingleArgument<int32_t>("axis", 1);
vector<TensorShape> out(2);
auto logits = in[0]; // Tensor with Shape [batch_size, num_classes]
auto labels = in[1]; // Tensor with shape [batch_size, ]
const auto canonical_axis =
canonical_axis_index_(axis, logits.dims().size());
const int batch_size =
size_to_dim_(canonical_axis, GetDimsVector(logits));
const int num_classes =
size_from_dim_(canonical_axis, GetDimsVector(logits));
out[0].set_data_type(logits.data_type());
out[0].add_dims(batch_size);
out[0].add_dims(num_classes);
return out;
})
.SetDoc(R"DOC(
Combined Softmax and Cross-Entropy loss operator. The operator first computes the softmax normalized values for each layer in the batch of the given input, then computes cross-entropy loss. This operator is numerically more stable than separate `Softmax` and `CrossEntropy` ops. The inputs are a 2-D tensor `logits` of size (batch_size x input_feature_dimensions), which represents the unscaled log probabilities, and a 1-dimensional integer `labels` tensor for ground truth. An optional third input blob (`weight_tensor`) can be used to weight the samples for the loss, which is useful if the training set is unbalanced. This operator outputs a `softmax` tensor which contains the probability for each label for each example (same shape is `logits` input), and a scalar `loss` value, which is the averaged cross-entropy loss between the softmax probabilities and the ground truth values. Use parameter `label_prob`=1 to enable inputting labels as a probability distribution.
Softmax cross-entropy loss function:
$$loss(x, class) = -\log{\biggl(\frac{\exp(x[class])}{\sum_{j} \exp(x[j])}\biggr)} = -x[class] + \log{\biggl(\sum_{j} \exp(x[j])\biggr)}$$
or if the `weight_tensor` has been passed:
$$loss(x, class) = weight[class]\biggl(-x[class] + \log{\biggl(\sum_{j} \exp(x[j])\biggr)}\biggr)$$
The `logits` input does not need to explicitly be a 2D vector; rather, it will be coerced into one. For an arbitrary n-dimensional tensor `X` in $[a_0, a_1, ..., a_{k-1}, a_k, ..., a_{n-1}]$, where k is the `axis` provided, then `X` will be coerced into a 2-dimensional tensor with dimensions $[(a_0 * ... * a_{k-1}), (a_k * ... * a_{n-1})]$. For the default case where `axis`=1, the `X` tensor will be coerced into a 2D tensor of dimensions $[a_0, (a_1 * ... * a_{n-1})]$, where $a_0$ is often the batch size. In this situation, we must have $a_0 = N$ and $a_1 * ... * a_{n-1} = D$. Each of these dimensions must be matched correctly, or else the operator will throw errors.
Github Links:
- https://github.com/pytorch/pytorch/blob/master/caffe2/operators/softmax_with_loss_op.cc
<details>
<summary> <b>Example</b> </summary>
**Code**
```
workspace.ResetWorkspace()
op = core.CreateOperator(
"SoftmaxWithLoss",
["logits", "labels"],
["softmax", "avgloss"]
)
workspace.FeedBlob("logits", np.random.randn(1, 5).astype(np.float32))
workspace.FeedBlob("labels", np.asarray([4]).astype(np.int32))
print("logits:", workspace.FetchBlob("logits"))
print("labels:", workspace.FetchBlob("labels"))
workspace.RunOperatorOnce(op)
print("softmax:", workspace.FetchBlob("softmax"))
print("avgloss:", workspace.FetchBlob("avgloss"))
```
**Result**
```
logits: [[-0.3429451 -0.80375195 0.23104447 1.4569176 -0.5268362 ]]
labels: [4]
softmax: [[0.09721052 0.0613179 0.17258129 0.58800864 0.0808817 ]]
avgloss: 2.5147676
```
</details>
<details>
<summary> <b>Example 2</b> </summary>
**Code**
```
workspace.ResetWorkspace()
op = core.CreateOperator(
"SoftmaxWithLoss",
["logits", "labels"],
["softmax", "avgloss"],
scale=5.0
)
workspace.FeedBlob("logits", np.asarray([[.1, .4, .7, 1.5, .2]]).astype(np.float32))
workspace.FeedBlob("labels", np.asarray([4]).astype(np.int32))
print("logits:", workspace.FetchBlob("logits"))
print("labels:", workspace.FetchBlob("labels"))
workspace.RunOperatorOnce(op)
print("softmax:", workspace.FetchBlob("softmax"))
print("avgloss:", workspace.FetchBlob("avgloss"))
```
**Result**
```
logits: [[0.1 0.4 0.7 1.5 0.2]]
labels: [4]
softmax: [[0.10715417 0.144643 0.19524762 0.4345316 0.11842369]]
avgloss: 10.667433
```
</details>
)DOC")
.Arg(
"label_prob",
"*(type: int; default: 0)* Setting to 1 enables inputting labels as probability distribution.")
.Arg(
"axis",
"*(type: int; default: 1)* Axis of the inputs when coerced to 2D.")
.Arg(
"scale",
"*(type: float)* Average loss output scaling factor (must be >= 0).")
.Arg(
"order",
"*(type: string; default: 'NCHW')* Order of blob dimensions (only 'NCHW' is supported currently).")
.Input(0, "logits", "*(type: Tensor`<float>`)* Input tensor.")
.Input(1, "labels", "*(type: Tensor`<float>`)* Ground truth label tensor.")
.Input(
2,
"weight_tensor",
"*(type: Tensor`<float>`)* [OPTIONAL] Blob used to weight the samples for the loss.")
.Output(0, "softmax", "*(type: Tensor`<float>`)* Softmax output tensor.")
.Output(1, "loss", "*(type: float)* Averaged cross-entropy loss output.");
// Input: X, T, P, dY; Output: dX
OPERATOR_SCHEMA(SoftmaxWithLossGradient).NumOutputs(1);
#define DONT_CARE (-1)
template <>
bool SoftmaxWithLossOp<float, CPUContext>::RunOnDevice() {
auto& X = Input(0); // Logits
auto& T = Input(1); // Labels / targets
const auto canonical_axis = X.canonical_axis_index(axis_);
// NOLINTNEXTLINE(cppcoreguidelines-init-variables)
int64_t N, D;
N = X.size_to_dim(canonical_axis); // batch size
D = X.size_from_dim(canonical_axis);
auto* P =
Output(0, X.sizes(), at::dtype<float>()); // Probabilities from softmax
float* Pdata = P->template mutable_data<float>();
const float* weights = (InputSize() > 2 ? Input(2).data<float>() : nullptr);
if (label_prob_mode_) {
CAFFE_ENFORCE_GE(T.dim(), 2);
CAFFE_ENFORCE_EQ(T.size_to_dim(canonical_axis), N);
CAFFE_ENFORCE_EQ(T.size_from_dim(canonical_axis), D);
} else {
if (T.dim() == canonical_axis) {
CAFFE_ENFORCE_EQ(T.numel(), N);
} else {
CAFFE_ENFORCE_EQ(T.size_to_dim(canonical_axis), N);
CAFFE_ENFORCE_EQ(T.size_from_dim(canonical_axis), 1);
}
}
if (!losses_.defined()) {
losses_ = caffe2::empty({N}, at::dtype<float>().device(CPU));
} else if (losses_.numel() != N) {
losses_.Resize(N);
}
softmax_utils::SoftmaxCPU<float>(
N,
D,
!label_prob_mode_,
X.data<float>(),
Pdata,
losses_.mutable_data<float>(),
&context_);
// Then compute cross entropy
float loss_sum = 0.0;
float weight_sum = 0.0;
if (!label_prob_mode_) {
const int* label_data = T.data<int>();
for (int i = 0; i < N; ++i) {
CAFFE_ENFORCE(
label_data[i] < D && label_data[i] >= 0,
"Label seems incorrect: label value larger than number of classes: ",
label_data[i],
" vs ",
D);
// NOLINTNEXTLINE(cppcoreguidelines-narrowing-conversions,bugprone-narrowing-conversions)
float weight = weights ? weights[i] : 1.0;
float l = -Pdata[i * D + label_data[i]] * weight;
loss_sum += l;
weight_sum += weight;
}
// NOLINTNEXTLINE(cppcoreguidelines-narrowing-conversions,bugprone-narrowing-conversions)
math::Exp(N * D, Pdata, Pdata, &context_);
} else {
const float* label_data = T.data<float>();
for (int i = 0; i < N; ++i) {
float l = 0.0;
float total_prob = 0.0;
// NOLINTNEXTLINE(cppcoreguidelines-narrowing-conversions,bugprone-narrowing-conversions)
float weight = weights ? weights[i] : 1.0;
for (int j = 0; j < D; ++j) {
CAFFE_ENFORCE(
label_data[i * D + j] >= 0,
"Label prob seems incorrect: label prob value must be nonnegative:",
" ",
label_data[i * D + j]);
l += -log(std::max(Pdata[i * D + j], 1e-20f)) * label_data[i * D + j] *
weight;
total_prob += label_data[i * D + j];
}
loss_sum += l;
CAFFE_ENFORCE(
std::abs(total_prob - 1.) < 1e-5f,
"Label prob seems incorrect: label prob values do not sum to 1.0: ",
total_prob,
" vs 1.0 (+/- 1e-5)");
weight_sum += weight;
}
}
auto* avg_loss =
Output(1, vector<int64_t>(), at::dtype<float>()); // Average loss
float* avg_loss_data = avg_loss->template mutable_data<float>();
if (weight_sum != 0.0) {
if (average_by_batch_size_) {
avg_loss_data[0] = loss_sum * scale_ / N;
} else {
avg_loss_data[0] = loss_sum * scale_ / weight_sum;
}
} else {
avg_loss_data[0] = 0.0;
}
return true;
}
template <>
bool SoftmaxWithLossGradientOp<float, CPUContext>::RunOnDevice() {
auto& X = Input(0); // Logits
auto& T = Input(1); // Labels / targets
// Input(2) is weights if given
auto& P = Input(InputSize() - 2); // Probabilities from softmax
auto& d_avg_loss = Input(InputSize() - 1); // Gradient w.r.t. avg loss
const float* weights = (InputSize() > 4 ? Input(2).data<float>() : nullptr);
const auto canonical_axis = X.canonical_axis_index(axis_);
// NOLINTNEXTLINE(cppcoreguidelines-init-variables)
int N, D;
N = X.size_to_dim(canonical_axis); // batch size
D = X.size_from_dim(canonical_axis);
auto* dX = Output(0, X.sizes(), at::dtype<float>());
// NOLINTNEXTLINE(cppcoreguidelines-init-variables)
float avg_denominator;
if (label_prob_mode_) {
CAFFE_ENFORCE_GE(T.dim(), 2);
CAFFE_ENFORCE_EQ(T.size_to_dim(canonical_axis), N);
CAFFE_ENFORCE_EQ(T.size_from_dim(canonical_axis), D);
} else {
if (T.dim() == canonical_axis) {
CAFFE_ENFORCE_EQ(T.numel(), N);
} else {
CAFFE_ENFORCE_EQ(T.size_to_dim(canonical_axis), N);
CAFFE_ENFORCE_EQ(T.size_from_dim(canonical_axis), 1);
}
}
const float* Pdata = P.data<float>();
float* dX_data = dX->template mutable_data<float>();
// Copy softmax probabilities into dX. All but the neuron
// corresponding to the correct label has gradient equaling e(x_j)
// which is the probability under softmax.
context_.CopyFromCPU<float>(P.numel(), Pdata, dX_data);
// Compute gradient for the matching labels.
float total_weight = 0.0f;
if (!label_prob_mode_) {
const int* label_data = T.data<int>();
if (weights) {
for (int i = 0; i < N; ++i) {
int idx = i * D + label_data[i];
float weight = weights[i];
// NOLINTNEXTLINE(cppcoreguidelines-narrowing-conversions,bugprone-narrowing-conversions)
dX_data[idx] = Pdata[idx] - 1.0;
for (int d = 0; d < D; d++) {
int k = i * D + d;
dX_data[k] *= weight;
}
total_weight += weight;
}
} else {
for (int i = 0; i < N; ++i) {
int idx = i * D + label_data[i];
dX_data[idx] = Pdata[idx] - 1.0f;
}
// NOLINTNEXTLINE(cppcoreguidelines-narrowing-conversions,bugprone-narrowing-conversions)
total_weight = N;
}
} else {
const float* label_data = T.data<float>();
if (weights) {
for (int i = 0; i < N; ++i) {
float weight = weights[i];
for (int j = 0; j < D; ++j) {
int idx = i * D + j;
dX_data[idx] = (Pdata[idx] - label_data[idx]) * weight;
}
total_weight += weight;
}
} else {
for (int i = 0; i < N; ++i) {
for (int j = 0; j < D; ++j) {
int idx = i * D + j;
dX_data[idx] = Pdata[idx] - label_data[idx];
}
}
// NOLINTNEXTLINE(cppcoreguidelines-narrowing-conversions,bugprone-narrowing-conversions)
total_weight = N;
}
}
// Scale by d_avg_loss / N
if (total_weight > 0) {
if (average_by_batch_size_) {
// NOLINTNEXTLINE(cppcoreguidelines-narrowing-conversions,bugprone-narrowing-conversions)
avg_denominator = N;
} else {
avg_denominator = total_weight;
}
math::Scale<float, float, CPUContext>(
dX->numel(),
scale_ / avg_denominator * d_avg_loss.data<float>()[0],
dX->data<float>(),
dX_data,
&context_);
}
return true;
}
namespace {
class GetSoftmaxWithLossGradient : public GradientMakerBase {
using GradientMakerBase::GradientMakerBase;
vector<OperatorDef> GetGradientDefs() override {
vector<string> blob_names{
{I(0), I(1), O(0), GO(1)},
};
// Add weight blob, if given
if (def_.input_size() == 3) {
blob_names.emplace(blob_names.begin() + 2, I(2));
}
return SingleGradientDef(
"SoftmaxWithLossGradient", "", blob_names, vector<string>{GI(0)});
}
};
REGISTER_GRADIENT(SoftmaxWithLoss, GetSoftmaxWithLossGradient);
} // namespace
} // namespace caffe2