forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathsparse_to_dense_mask_op.h
300 lines (269 loc) · 9.82 KB
/
sparse_to_dense_mask_op.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
#ifndef CAFFE2_OPERATORS_SPARSE_TO_DENSE_MASK_OP_H_
#define CAFFE2_OPERATORS_SPARSE_TO_DENSE_MASK_OP_H_
#include <algorithm>
#include <unordered_map>
#include <vector>
#include "caffe2/core/context.h"
#include "caffe2/core/export_caffe2_op_to_c10.h"
#include <c10/util/irange.h>
#include "caffe2/core/operator.h"
#include "caffe2/core/tensor.h"
#include "caffe2/utils/math.h"
C10_DECLARE_EXPORT_CAFFE2_OP_TO_C10(SparseToDenseMask);
namespace caffe2 {
template <class Context>
class SparseToDenseMaskBase : public Operator<Context> {
public:
USE_OPERATOR_CONTEXT_FUNCTIONS;
template <class... Args>
explicit SparseToDenseMaskBase(Args&&... args)
: Operator<Context>(std::forward<Args>(args)...) {
std::vector<int64_t> mask =
this->template GetRepeatedArgument<int64_t>("mask");
featuresCount_ = mask.size();
CAFFE_ENFORCE(!mask.empty(), "mask can't be empty");
auto biggest = *std::max_element(mask.begin(), mask.end());
dense_.assign(std::min(kMaxDenseSize, biggest + 1), -1);
for (const auto i : c10::irange(mask.size())) {
int64_t id = mask[i];
CAFFE_ENFORCE_GE(id, 0, "Only positive IDs are allowed.");
if (id >= kMaxDenseSize) {
CAFFE_ENFORCE(sparse_.count(id) == 0, "Duplicated id: ", id);
sparse_[id] = i;
} else {
CAFFE_ENFORCE(dense_[id] == -1, "Duplicated id: ", id);
dense_[id] = i;
}
}
}
protected:
const int64_t kMaxDenseSize = 1024 * 128;
std::unordered_map<int64_t, int> sparse_;
std::vector<int> dense_;
size_t featuresCount_;
inline int getFeatureIdx(int64_t id) const {
if (id >= kMaxDenseSize) {
const auto& iter = sparse_.find(id);
if (iter == sparse_.end()) {
return -1;
} else {
return iter->second;
}
} else {
// NOLINTNEXTLINE(clang-diagnostic-sign-compare)
return (id >= dense_.size()) ? -1 : dense_[id];
}
}
};
template <class Context>
class SparseToDenseMaskOp : public SparseToDenseMaskBase<Context> {
public:
USE_OPERATOR_CONTEXT_FUNCTIONS;
template <class... Args>
explicit SparseToDenseMaskOp(Args&&... args)
: SparseToDenseMaskBase<Context>(std::forward<Args>(args)...) {
returnPresenceMask_ =
this->template GetSingleArgument<bool>("return_presence_mask", false);
maxSkippedRows_ = this->template GetSingleArgument<int32_t>(
"max_skipped_indices", kMaxSkippedSparseIndices);
}
bool RunOnDevice() override {
return DispatchHelper<TensorTypes<int32_t, int64_t>>::call(
this, Input(INDICES));
}
template <typename TInd>
bool DoRunWithType() {
auto& sparse_indices = Input(INDICES);
CAFFE_ENFORCE_EQ(sparse_indices.dim(), 1);
auto& sparse_values = Input(VALUES);
CAFFE_ENFORCE_GE(sparse_values.dim(), 1);
CAFFE_ENFORCE_EQ(sparse_indices.numel(), sparse_values.size(0));
auto& default_value = Input(DEFAULT);
CAFFE_ENFORCE_EQ(default_value.dim() + 1, sparse_values.dim());
CAFFE_ENFORCE_EQ(default_value.numel(), sparse_values.size_from_dim(1));
CAFFE_ENFORCE(sparse_values.dtype() == default_value.dtype());
const TInd* sparse_indices_vec = sparse_indices.template data<TInd>();
const char* sparse_values_vec =
static_cast<const char*>(sparse_values.raw_data());
const void* default_val = default_value.raw_data();
int64_t block_size = default_value.numel();
size_t block_nbytes = default_value.nbytes();
const size_t cols = this->featuresCount_;
int rows = -1;
int32_t sparse_indices_length = sparse_indices.dim32(0);
const int32_t* lengths_vec = nullptr;
auto* output = Output(OUTPUTVALUE);
Tensor* presence_mask = nullptr;
if (returnPresenceMask_) {
presence_mask = Output(PRESENCEMASK);
}
vector<int64_t> shape;
if (InputSize() == 4) {
auto& lengths = Input(LENGTHS);
CAFFE_ENFORCE_EQ(lengths.dim(), 1);
lengths_vec = lengths.template data<int32_t>();
rows = lengths.dim32(0);
}
if (rows == -1) {
// if the LENGTHS is not set, the output will be a vector
rows = 1;
lengths_vec = &sparse_indices_length;
} else {
shape.push_back(rows);
}
shape.push_back(cols);
if (returnPresenceMask_) {
presence_mask->Resize(shape);
}
shape.insert(
shape.end(),
default_value.sizes().begin(),
default_value.sizes().end());
output->Resize(shape);
// init
// TODO: consider unrolling CopyItems to make elemental types copy faster
char* output_data =
static_cast<char*>(output->raw_mutable_data(sparse_values.dtype()));
// NOLINTNEXTLINE(clang-diagnostic-sign-compare)
for (int i = 0; i < cols * rows; i++) {
context_.CopyItemsSameDevice(
default_value.dtype(),
block_size,
default_val,
output_data + i * block_nbytes);
}
bool* presence_mask_data = nullptr;
if (returnPresenceMask_) {
presence_mask_data = presence_mask->template mutable_data<bool>();
math::Set<bool, Context>(
rows * cols, false, presence_mask_data, &context_);
}
int64_t offset = 0;
for (const auto r : c10::irange(rows)) {
bool skippedSparseIndex = false;
for (int c = 0; c < lengths_vec[r]; c++) {
const auto sparse_index = sparse_indices_vec[offset + c];
if (sparse_index < 0 ||
sparse_index >= std::numeric_limits<TInd>::max()) {
skippedSparseIndex = true;
LOG(WARNING) << "Skipping invalid sparse index: " << sparse_index;
continue;
}
int idx = this->getFeatureIdx(sparse_index);
if (idx != -1) {
context_.CopyItemsSameDevice(
sparse_values.dtype(),
block_size,
sparse_values_vec + (offset + c) * block_nbytes,
output_data + (r * cols + idx) * block_nbytes);
if (returnPresenceMask_) {
presence_mask_data[r * cols + idx] = true;
}
}
}
skippedRows_ += skippedSparseIndex;
CAFFE_ENFORCE_LT(
skippedRows_,
maxSkippedRows_,
"Too many rows with invalid sparse indices skipped");
offset += lengths_vec[r];
}
return true;
}
private:
static const uint32_t kMaxSkippedSparseIndices = 50;
bool returnPresenceMask_;
uint32_t maxSkippedRows_ = 0;
uint32_t skippedRows_ = 0;
INPUT_TAGS(INDICES, VALUES, DEFAULT, LENGTHS);
OUTPUT_TAGS(OUTPUTVALUE, PRESENCEMASK);
};
template <class Context>
class SparseToDenseMaskGradientOp : public SparseToDenseMaskBase<Context> {
public:
USE_OPERATOR_CONTEXT_FUNCTIONS;
template <class... Args>
explicit SparseToDenseMaskGradientOp(Args&&... args)
: SparseToDenseMaskBase<Context>(std::forward<Args>(args)...) {}
bool RunOnDevice() override {
return DispatchHelper<TensorTypes<int32_t, int64_t>>::call(
this, Input(INDICES));
}
template <typename TInd>
bool DoRunWithType() {
auto& sparse_indices = Input(INDICES);
CAFFE_ENFORCE_EQ(sparse_indices.dim(), 1);
auto& gradient_output = Input(GOUTPUT);
int64_t block_size = gradient_output.size_from_dim(1);
size_t block_nbytes = gradient_output.itemsize() * block_size;
const size_t cols = this->featuresCount_;
int rows = -1;
int iter_offset = 1;
int32_t default_length = sparse_indices.dim32(0);
const int32_t* lengths_vec = nullptr;
auto* output = Output(GVALUES);
vector<int64_t> shape;
if (InputSize() > LENGTHS) {
// if the LENGTHS is set, the gradient_output has dim:
// lengths * mask.size() * feature_dim
auto& lengths = Input(LENGTHS);
lengths_vec = lengths.template data<int32_t>();
rows = lengths.dim32(0);
CAFFE_ENFORCE_EQ(lengths.dim(), 1);
CAFFE_ENFORCE_GE(gradient_output.dim(), 2);
CAFFE_ENFORCE_EQ(gradient_output.size(0), rows);
CAFFE_ENFORCE_EQ(gradient_output.size(1), cols);
block_nbytes /= gradient_output.size(1);
block_size /= gradient_output.size(1);
iter_offset += 1;
}
if (rows == -1) {
// if the LENGTHS is not set, the gradient_output has dim:
// mask.size() * feature_dim
rows = 1;
lengths_vec = &default_length;
CAFFE_ENFORCE_GE(gradient_output.dim(), 1);
CAFFE_ENFORCE_EQ(gradient_output.size(0), cols);
}
shape.push_back(default_length);
// insert feature_dim
shape.insert(
shape.end(),
gradient_output.sizes().begin() + iter_offset,
gradient_output.sizes().end());
output->Resize(shape);
const TInd* sparse_indices_vec = sparse_indices.template data<TInd>();
const char* gradient_output_vec =
static_cast<const char*>(gradient_output.raw_data());
char* output_data =
static_cast<char*>(output->raw_mutable_data(gradient_output.dtype()));
memset(output_data, 0, output->nbytes());
math::Set<char, Context>(
default_length * gradient_output.itemsize(), 0, output_data, &context_);
int32_t offset = 0;
// SparseToDenseMask is not injective; gradient_used records
// if the gradient is used for other input value from the same row
vector<bool> gradient_used(cols, false);
for (const auto r : c10::irange(rows)) {
std::fill(gradient_used.begin(), gradient_used.end(), false);
for (int c = lengths_vec[r] - 1; c >= 0; c--) {
int idx = this->getFeatureIdx(sparse_indices_vec[offset + c]);
if (idx != -1 && !gradient_used[idx]) {
gradient_used[idx] = true;
context_.CopyItemsSameDevice(
gradient_output.dtype(),
block_size,
gradient_output_vec + (r * cols + idx) * block_nbytes,
output_data + (offset + c) * block_nbytes);
}
}
offset += lengths_vec[r];
}
return true;
}
private:
INPUT_TAGS(INDICES, GOUTPUT, LENGTHS);
OUTPUT_TAGS(GVALUES);
};
} // namespace caffe2
#endif // CAFFE2_OPERATORS_SPARSE_TO_DENSE_MASK_OP_H_