forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathsquare_root_divide_op.cc
43 lines (35 loc) · 1.06 KB
/
square_root_divide_op.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
#include "caffe2/operators/square_root_divide_op.h"
namespace caffe2 {
REGISTER_CPU_OPERATOR(SquareRootDivide, SquareRootDivideOp<CPUContext>);
OPERATOR_SCHEMA(SquareRootDivide)
.NumInputs(2)
.NumOutputs(1)
.AllowInplace({{0, 0}})
.SetDoc(R"DOC(
Given DATA tensor with first dimension N and SCALE vector of the same size N
produces an output tensor with same dimensions as DATA. Which consists of DATA
slices. i-th slice is divided by sqrt(SCALE[i]) elementwise. If SCALE[i] == 0
output slice is identical to the input one (no scaling)
Example:
Data = [
[2.0, 4.0],
[9.0, 12.0]
]
SCALE = [4, 9]
OUTPUT = [
[1.0, 2.0],
[3.0, 4.0]
]
)DOC");
class GetSquareRootDivideGradient : public GradientMakerBase {
using GradientMakerBase::GradientMakerBase;
vector<OperatorDef> GetGradientDefs() override {
return SingleGradientDef(
"SquareRootDivide",
"",
vector<string>{GO(0), I(1)},
vector<string>{GI(0)});
}
};
REGISTER_GRADIENT(SquareRootDivide, GetSquareRootDivideGradient);
} // namespace caffe2