forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtext_file_reader.cc
200 lines (177 loc) · 6.54 KB
/
text_file_reader.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
#include "caffe2/core/context.h"
#include "caffe2/core/operator.h"
#include "caffe2/core/tensor.h"
#include "caffe2/core/types.h"
#include "caffe2/operators/text_file_reader_utils.h"
#include "caffe2/utils/string_utils.h"
namespace caffe2 {
struct TextFileReaderInstance {
TextFileReaderInstance(
const std::vector<char>& delims,
char escape,
const std::string& filename,
int numPasses,
// NOLINTNEXTLINE(modernize-pass-by-value)
const std::vector<int>& types)
: fileReader(filename),
tokenizer(Tokenizer(delims, escape), &fileReader, numPasses),
fieldTypes(types) {
for (const auto dt : fieldTypes) {
fieldMetas.push_back(
DataTypeToTypeMeta(static_cast<TensorProto_DataType>(dt)));
fieldByteSizes.push_back(fieldMetas.back().itemsize());
}
}
FileReader fileReader;
BufferedTokenizer tokenizer;
std::vector<int> fieldTypes;
std::vector<TypeMeta> fieldMetas;
std::vector<size_t> fieldByteSizes;
size_t rowsRead{0};
// hack to guarantee thread-safeness of the read op
// TODO(azzolini): support multi-threaded reading.
std::mutex globalMutex_;
};
class CreateTextFileReaderOp : public Operator<CPUContext> {
public:
template <class... Args>
explicit CreateTextFileReaderOp(Args&&... args)
: Operator<CPUContext>(std::forward<Args>(args)...),
filename_(GetSingleArgument<string>("filename", "")),
numPasses_(GetSingleArgument<int>("num_passes", 1)),
fieldTypes_(GetRepeatedArgument<int>("field_types")) {
CAFFE_ENFORCE(fieldTypes_.size() > 0, "field_types arg must be non-empty");
}
bool RunOnDevice() override {
*OperatorBase::Output<std::unique_ptr<TextFileReaderInstance>>(0) =
// NOLINTNEXTLINE(modernize-make-unique)
std::unique_ptr<TextFileReaderInstance>(new TextFileReaderInstance(
{'\n', '\t'}, '\0', filename_, numPasses_, fieldTypes_));
return true;
}
private:
std::string filename_;
int numPasses_;
std::vector<int> fieldTypes_;
};
inline void convert(
TensorProto_DataType dst_type,
const char* src_start,
const char* src_end,
void* dst) {
switch (dst_type) {
case TensorProto_DataType_STRING: {
static_cast<std::string*>(dst)->assign(src_start, src_end);
} break;
case TensorProto_DataType_FLOAT: {
// TODO(azzolini): avoid copy, use faster conversion
std::string str_copy(src_start, src_end);
const char* src_copy = str_copy.c_str();
// NOLINTNEXTLINE(cppcoreguidelines-init-variables)
char* src_copy_end;
float val = strtof(src_copy, &src_copy_end);
if (src_copy == src_copy_end) {
throw std::runtime_error("Invalid float: " + str_copy);
}
*static_cast<float*>(dst) = val;
} break;
default:
throw std::runtime_error("Unsupported type.");
}
}
class TextFileReaderReadOp : public Operator<CPUContext> {
public:
template <class... Args>
explicit TextFileReaderReadOp(Args&&... args)
: Operator<CPUContext>(std::forward<Args>(args)...),
batchSize_(GetSingleArgument<int>("batch_size", 1)) {}
bool RunOnDevice() override {
const int numFields = OutputSize();
CAFFE_ENFORCE(numFields > 0, "Expected at least one output.");
auto instance =
OperatorBase::Input<std::unique_ptr<TextFileReaderInstance>>(0).get();
CAFFE_ENFORCE(
// NOLINTNEXTLINE(clang-diagnostic-sign-compare)
instance->fieldTypes.size() == numFields,
"Invalid number of outputs. Expected " +
to_string(instance->fieldTypes.size()) + " got " +
to_string(numFields));
// char* datas[numFields];
// MSVC does not allow using const int, so we will need to dynamically allocate
// it.
std::vector<char*> datas(numFields);
for (int i = 0; i < numFields; ++i) {
Output(i)->Resize(batchSize_);
datas[i] = (char*)Output(i)->raw_mutable_data(instance->fieldMetas[i]);
}
int rowsRead = 0;
{
// TODO(azzolini): support multi-threaded reading
std::lock_guard<std::mutex> guard(instance->globalMutex_);
bool finished = false;
// NOLINTNEXTLINE(cppcoreguidelines-pro-type-member-init)
Token token;
while (!finished && (rowsRead < batchSize_)) {
// NOLINTNEXTLINE(cppcoreguidelines-init-variables)
int field;
for (field = 0; field < numFields; ++field) {
finished = !instance->tokenizer.next(token);
if (finished) {
CAFFE_ENFORCE(
field == 0, "Invalid number of fields at end of file.");
break;
}
CAFFE_ENFORCE(
(field == 0 && token.startDelimId == 0) ||
(field > 0 && token.startDelimId == 1),
"Invalid number of columns at row ",
instance->rowsRead + rowsRead + 1);
char*& data = datas[field];
convert(
(TensorProto_DataType)instance->fieldTypes[field],
token.start,
token.end,
data);
data += instance->fieldByteSizes[field];
}
if (!finished) {
++rowsRead;
}
}
instance->rowsRead += rowsRead;
}
for (int i = 0; i < numFields; ++i) {
Output(i)->ShrinkTo(rowsRead);
}
return true;
}
private:
int64_t batchSize_;
};
CAFFE_KNOWN_TYPE(std::unique_ptr<TextFileReaderInstance>);
REGISTER_CPU_OPERATOR(CreateTextFileReader, CreateTextFileReaderOp);
REGISTER_CPU_OPERATOR(TextFileReaderRead, TextFileReaderReadOp);
OPERATOR_SCHEMA(CreateTextFileReader)
.NumInputs(0)
.NumOutputs(1)
.ScalarType(TensorProto::UNDEFINED)
.SetDoc("Create a text file reader. Fields are delimited by <TAB>.")
.Arg("filename", "Path to the file.")
.Arg("num_passes", "Number of passes over the file.")
.Arg(
"field_types",
"List with type of each field. Type enum is found at core.DataType.")
.Output(0, "handler", "Pointer to the created TextFileReaderInstance.");
OPERATOR_SCHEMA(TextFileReaderRead)
.NumInputs(1)
.NumOutputs(1, INT_MAX)
.SetDoc(
"Read a batch of rows from the given text file reader instance. "
"Expects the number of fields to be equal to the number of outputs. "
"Each output is a 1D tensor containing the values for the given field "
"for each row. When end of file is reached, returns empty tensors.")
.Input(0, "handler", "Pointer to an existing TextFileReaderInstance.")
.Arg("batch_size", "Maximum number of rows to read.");
NO_GRADIENT(CreateTextFileReader);
NO_GRADIENT(TextFileReaderRead);
} // namespace caffe2