forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtile_op.cc
207 lines (174 loc) · 5.97 KB
/
tile_op.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
#include "caffe2/operators/tile_op.h"
#include <string>
namespace caffe2 {
template <>
bool TileOp<CPUContext>::RunOnDevice() {
return DispatchHelper<TensorTypes<
at::Half,
std::uint8_t,
std::int32_t,
std::int64_t,
float,
double,
std::string>>::call(this, Input(0));
}
template <>
template <>
bool TileOp<CPUContext>::DoRunWithType<std::string>() {
if (InputSize() > 1) {
// We potentially have tiles and/or axis specified as inputs
// as well. We will check for them in that order. In other words:
// InputSize() == 2: tiles is specified
// InputSize() == 3: tiles is specified and axis.
// Anything specified as input will override the arguments
CAFFE_ENFORCE(
Input(1).dim() == 1 && Input(1).numel() == 1,
"Input `tiles` should be a vector of size 1.");
tiles_ = GetArgFromTensor(Input(1));
// Because of a bug in original code, temporarily adds this part to keep
// backward compatibility.
// TODO(yangxm): Remove this part when prod runtime upgraded with fixed
// model config.
if (Input(1).IsType<std::int64_t>()) {
axis_ = 0;
}
if (InputSize() > 2) {
CAFFE_ENFORCE(
Input(2).dim() == 1 && Input(2).numel() == 1,
"Input `axis` should be a vector of size 1.");
axis_ = GetArgFromTensor(Input(2));
} else {
CAFFE_ENFORCE(
OperatorBase::HasArgument("axis"),
"Argument `axis` is missing and was not specified as input.");
}
} else {
CAFFE_ENFORCE(
OperatorBase::HasArgument("tiles"),
"Argument `tiles` is missing and was not specified as input.");
CAFFE_ENFORCE(
OperatorBase::HasArgument("axis"),
"Argument `axis` is missing and was not specified as input.");
}
const auto& X = Input(0);
auto* Y = Output(0);
const int axis = X.canonical_axis_index(axis_);
// reshape output to be input tiled along the axis
std::vector<std::int64_t> Y_dims = X.sizes().vec();
Y_dims[axis] *= tiles_;
Y->Resize(Y_dims);
// size up to (and not including) axis
const int outer_size = X.size_to_dim(axis);
// size from axis up
const int inner_size = X.size_from_dim(axis);
const TypeMeta meta = X.dtype();
const int item_size = X.itemsize();
const char* X_ptr = reinterpret_cast<const char*>(X.raw_data());
char* Y_ptr = reinterpret_cast<char*>(Y->raw_mutable_data(meta));
for (int i = 0; i < outer_size; ++i) {
for (int t = 0; t < tiles_; ++t) {
context_.CopyItemsSameDevice(meta, inner_size, X_ptr, Y_ptr);
Y_ptr += inner_size * item_size;
}
X_ptr += inner_size * item_size;
}
return true;
}
REGISTER_CPU_OPERATOR(Tile, TileOp<CPUContext>);
REGISTER_CPU_OPERATOR(TileGradient, TileGradientOp<CPUContext>);
OPERATOR_SCHEMA(Tile)
.NumInputs(1, 3)
.NumOutputs(1)
.TensorInferenceFunction([](const OperatorDef& def,
const std::vector<TensorShape>& in) {
std::vector<TensorShape> out(1);
out[0] = TensorShape(in[0]);
ArgumentHelper helper(def);
const std::int32_t tiles =
helper.GetSingleArgument<std::int32_t>("tiles", 1);
const std::int32_t axis =
helper.GetSingleArgument<std::int32_t>("axis", 0);
if (in.size() > 1) {
// Tile or axis is specified as input; we can't determine
// the size
out[0].set_unknown_shape(true);
} else {
const auto canonical_axis =
canonical_axis_index_(axis, out[0].dims().size());
out[0].set_dims(
canonical_axis, out[0].dims().Get(canonical_axis) * tiles);
}
return out;
})
.SetDoc(R"DOC(
Constructs a tensor by tiling a given tensor along a specified axis. This operation creates a new tensor by replicating the input tensor a number of times specified by the `tiles` argument along the `axis` dimension. The output tensor's `axis` dimension has $(X.dims(axis) * tiles)$ elements.
Github Links:
- https://github.com/pytorch/pytorch/blob/master/caffe2/operators/tile_op.cc
<details>
<summary> <b>Example</b> </summary>
**Code**
```
workspace.ResetWorkspace()
op = core.CreateOperator(
"Tile",
["X", "tiles", "axis"],
["Y"]
)
workspace.FeedBlob("X", np.random.randint(10, size=(5,5)))
workspace.FeedBlob("tiles", np.array([5]).astype(np.int32))
workspace.FeedBlob("axis", np.array([1]).astype(np.int32))
print("X:", workspace.FetchBlob("X"))
workspace.RunOperatorOnce(op)
print("Y:", workspace.FetchBlob("Y"))
```
**Result**
```
X:
[[9 1 7 1 3]
[2 3 6 2 5]
[0 9 2 6 4]
[5 8 1 5 9]
[2 0 1 3 7]]
Y:
[[9 1 7 1 3 9 1 7 1 3 9 1 7 1 3 9 1 7 1 3 9 1 7 1 3]
[2 3 6 2 5 2 3 6 2 5 2 3 6 2 5 2 3 6 2 5 2 3 6 2 5]
[0 9 2 6 4 0 9 2 6 4 0 9 2 6 4 0 9 2 6 4 0 9 2 6 4]
[5 8 1 5 9 5 8 1 5 9 5 8 1 5 9 5 8 1 5 9 5 8 1 5 9]
[2 0 1 3 7 2 0 1 3 7 2 0 1 3 7 2 0 1 3 7 2 0 1 3 7]]
```
</details>
)DOC")
.Arg("tiles", "(*int*): number of replicas")
.Arg("axis", "(*int*): axis to replicate along")
.Input(0, "X", "(*Tensor*): input tensor")
.Input(
1,
"tiles",
"(*Tensor`<int>`*): [OPTIONAL] number of replicas (overrides `tiles` argument)")
.Input(
2,
"axis",
"(*Tensor`<int>`*): [OPTIONAL] axis to replicate along (overrides `axis` argument)")
.Output(0, "Y", "(*Tensor*): output tensor")
.InheritOnnxSchema();
OPERATOR_SCHEMA(TileGradient).NumInputs(1, 3).NumOutputs(1);
namespace {
class GetTileGradient : public GradientMakerBase {
using GradientMakerBase::GradientMakerBase;
std::vector<OperatorDef> GetGradientDefs() override {
// Check whether the tiles/axis information was
// passed through input arguments
std::vector<std::string> g_inputs({GO(0)});
if (Def().input_size() > 1) {
g_inputs.push_back(I(1));
}
if (Def().input_size() > 2) {
g_inputs.push_back(I(2));
}
return SingleGradientDef(
"TileGradient", "", g_inputs, std::vector<std::string>{GI(0)});
}
};
} // namespace
REGISTER_GRADIENT(Tile, GetTileGradient);
} // namespace caffe2