forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtop_k.cc
374 lines (330 loc) · 10.4 KB
/
top_k.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
#include "caffe2/operators/top_k.h"
#include <algorithm>
#include <functional>
#include <queue>
#include <utility>
#include <vector>
#include "caffe2/proto/caffe2_pb.h"
#include "caffe2/utils/math.h"
namespace caffe2 {
namespace {
template <typename T>
struct ValueComp {
bool operator()(
const std::pair<T, int64_t>& lhs,
const std::pair<T, int64_t>& rhs) const {
return lhs.first > rhs.first ||
(lhs.first == rhs.first && lhs.second < rhs.second);
}
};
template <typename T>
void GetTopK(
const T* input,
const int64_t n,
const int64_t k,
const int64_t src_offset,
const int64_t dst_offset,
const int64_t stride,
T* values,
int64_t* indices,
int64_t* flatten_indices) {
const T* src_ptr = input + src_offset;
std::vector<std::pair<T, int64_t>> heap_data;
heap_data.reserve(k);
for (int64_t i = 0; i < k && i < n; ++i) {
heap_data.emplace_back(*src_ptr, i);
src_ptr += stride;
}
std::priority_queue<
std::pair<T, int64_t>,
std::vector<std::pair<T, int64_t>>,
ValueComp<T>>
pq(ValueComp<T>(), std::move(heap_data));
for (int64_t i = k; i < n; ++i) {
if (pq.top().first < *src_ptr) {
pq.pop();
pq.emplace(*src_ptr, i);
}
src_ptr += stride;
}
int64_t dst_pos = dst_offset + (std::min(k, n) - 1) * stride;
while (!pq.empty()) {
const auto& item = pq.top();
values[dst_pos] = item.first;
indices[dst_pos] = item.second;
if (flatten_indices != nullptr) {
flatten_indices[dst_pos] = src_offset + item.second * stride;
}
pq.pop();
dst_pos -= stride;
}
}
template <typename T>
void SetTopKGradient(
const T* values,
const int64_t* indices,
const int k,
const int64_t src_offset,
const int64_t dst_offset,
const int64_t stride,
T* gradient) {
int64_t src_pos = src_offset;
for (int i = 0; i < k; ++i) {
if (indices[src_pos] < 0) {
continue;
}
gradient[dst_offset + indices[src_pos] * stride] = values[src_pos];
src_pos += stride;
}
}
} // namespace
template <typename T, class Context>
bool TopKOp<T, Context>::RunOnDevice() {
const auto& input = Input(0);
auto* values = Output(0);
auto* indices = Output(1);
auto* flatten_indices = OutputSize() > 2 ? Output(2) : nullptr;
int64_t k = k_;
if(k == -1 && InputSize() == 2) {
k = Input(1).template data<int64_t>()[0];
}
CAFFE_ENFORCE(k >= 1, "k argument must be >= 1");
at::IntArrayRef input_dims = input.sizes();
if (axis_ == -1) {
// NOLINTNEXTLINE(cppcoreguidelines-narrowing-conversions,bugprone-narrowing-conversions)
axis_ = input_dims.size() - 1;
}
CAFFE_ENFORCE_GE(axis_, 0);
CAFFE_ENFORCE_LT(axis_, input_dims.size());
std::vector<int64_t> output_dims = input_dims.vec();
output_dims[axis_] = k;
values->Resize(output_dims);
indices->Resize(output_dims);
if (flatten_indices != nullptr) {
flatten_indices->Resize(indices->numel());
}
const T* input_data = input.template data<T>();
T* values_data = values->template mutable_data<T>();
int64_t* indices_data = indices->template mutable_data<int64_t>();
int64_t* flatten_indices_data = flatten_indices == nullptr
? nullptr
: flatten_indices->template mutable_data<int64_t>();
// init values as the default value
math::Set<T, Context>(values->numel(), T(0), values_data, &context_);
math::Set<int64_t, Context>(
indices->numel(), int64_t(-1), indices_data, &context_);
if (flatten_indices_data != nullptr) {
math::Set<int64_t, Context>(
flatten_indices->numel(), int64_t(-1), flatten_indices_data, &context_);
}
const int64_t prev_size = std::accumulate(
input_dims.cbegin(),
input_dims.cbegin() + axis_,
int64_t(1),
// NOLINTNEXTLINE(modernize-use-transparent-functors)
std::multiplies<int64_t>());
const int64_t next_size = std::accumulate(
input_dims.cbegin() + axis_ + 1,
input_dims.cend(),
int64_t(1),
// NOLINTNEXTLINE(modernize-use-transparent-functors)
std::multiplies<int64_t>());
const int64_t src_offset_stride = input_dims[axis_] * next_size;
const int64_t dst_offset_stride = k * next_size;
int64_t src_offset = 0;
int64_t dst_offset = 0;
for (int64_t i = 0; i < prev_size; ++i) {
for (int64_t j = 0; j < next_size; ++j) {
GetTopK(
input_data,
input_dims[axis_],
k,
src_offset + j,
dst_offset + j,
next_size,
values_data,
indices_data,
flatten_indices_data);
}
src_offset += src_offset_stride;
dst_offset += dst_offset_stride;
}
return true;
}
template <typename T, class Context>
bool TopKGradientOp<T, Context>::RunOnDevice() {
const auto& values = Input(0);
const auto& indices = Input(1);
const auto& original_input = Input(2);
auto* output = Output(0);
at::IntArrayRef values_dims = values.sizes();
at::IntArrayRef origin_dims = original_input.sizes();
CAFFE_ENFORCE_EQ(values_dims.size(), origin_dims.size());
output->Resize(origin_dims);
const T* values_data = values.template data<T>();
const int64_t* indices_data = indices.template data<int64_t>();
T* output_data = output->template mutable_data<T>();
if (axis_ == -1) {
// NOLINTNEXTLINE(cppcoreguidelines-narrowing-conversions,bugprone-narrowing-conversions)
axis_ = values_dims.size() - 1;
}
const int k = values_dims[axis_];
math::Set<T, Context>(output->numel(), T(0), output_data, &context_);
const int64_t prev_size = std::accumulate(
values_dims.cbegin(),
values_dims.cbegin() + axis_,
int64_t(1),
// NOLINTNEXTLINE(modernize-use-transparent-functors)
std::multiplies<int64_t>());
const int64_t next_size = std::accumulate(
values_dims.cbegin() + axis_ + 1,
values_dims.cend(),
int64_t(1),
// NOLINTNEXTLINE(modernize-use-transparent-functors)
std::multiplies<int64_t>());
const int64_t src_offset_stride = k * next_size;
const int64_t dst_offset_stride = origin_dims[axis_] * next_size;
int64_t src_offset = 0;
int64_t dst_offset = 0;
for (int64_t i = 0; i < prev_size; ++i) {
for (int64_t j = 0; j < next_size; ++j) {
SetTopKGradient(
values_data,
indices_data,
k,
src_offset + j,
dst_offset + j,
next_size,
output_data);
}
src_offset += src_offset_stride;
dst_offset += dst_offset_stride;
}
return true;
}
REGISTER_CPU_OPERATOR(TopK, TopKOp<float, CPUContext>);
REGISTER_CPU_OPERATOR(TopKGradient, TopKGradientOp<float, CPUContext>);
OPERATOR_SCHEMA(TopK)
.NumInputs(1, 2)
.NumOutputs(2, 3)
.TensorInferenceFunction([](const OperatorDef& def,
const vector<TensorShape>& in) {
vector<TensorShape> out = {in[0], in[0]};
ArgumentHelper helper(def);
auto k = helper.GetSingleArgument("k", -1);
auto dims_size = in[0].dims_size();
out[0].set_dims(dims_size - 1, k);
out[1].set_dims(dims_size - 1, k);
out[1].set_data_type(TensorProto_DataType_INT32);
if (def.output_size() > 2) {
TensorShape flatten_indices_shape;
flatten_indices_shape.set_data_type(TensorProto_DataType_INT32);
flatten_indices_shape.add_dims(
std::accumulate(
in[0].dims().begin(),
in[0].dims().end() - 1,
1,
// NOLINTNEXTLINE(modernize-use-transparent-functors)
std::multiplies<long>()) *
k);
out.push_back(flatten_indices_shape);
}
return out;
})
.SetDoc(R"DOC(
Retrieve the top-K elements of the last dimension.
Given an input tensor of shape $(a_1, a_2, ..., a_n, r)$. `k` can be passed as an integer argument or a 1D tensor containing a single integer.
Returns up to three outputs:
1. Value tensor of shape $(a_1, a_2, ..., a_n, k)$ which contains the values of the top k elements along the last dimension
2. Index tensor of shape $(a_1, a_2, ..., a_n, k)$ which contains the indices of the top k elements (original indices from the input tensor).
3. [OPTIONAL] Flattened index tensor of shape $(a_1 * a_2 * ... * a_n * k,)$.
Given two equivalent values, this operator uses the indices along the last dimension as a tiebreaker. That is, the element with the lower index will appear first.
Github Links:
- https://github.com/pytorch/pytorch/blob/master/caffe2/operators/top_k.cc
<details>
<summary> <b>Example</b> </summary>
**Code**
```
workspace.ResetWorkspace()
op = core.CreateOperator(
"TopK",
["X"],
["Values", "Indices", "Flattened_indices"],
k=2
)
workspace.FeedBlob("X", np.random.randint(10, size=(3,3,3)).astype(np.float32))
print("X:", workspace.FetchBlob("X"))
workspace.RunOperatorOnce(op)
print("Values:", workspace.FetchBlob("Values"))
print("Indices:", workspace.FetchBlob("Indices"))
print("Flattened_indices:", workspace.FetchBlob("Flattened_indices"))
```
**Result**
```
X:
[[[6. 7. 0.]
[8. 7. 7.]
[1. 5. 6.]]
[[0. 6. 1.]
[2. 8. 4.]
[1. 2. 9.]]
[[4. 3. 7.]
[0. 1. 7.]
[0. 1. 8.]]]
Values:
[[[7. 6.]
[8. 7.]
[6. 5.]]
[[6. 1.]
[8. 4.]
[9. 2.]]
[[7. 4.]
[7. 1.]
[8. 1.]]]
Indices:
[[[1 0]
[0 1]
[2 1]]
[[1 2]
[1 2]
[2 1]]
[[2 0]
[2 1]
[2 1]]]
Flattened_indices: [ 1 0 3 4 8 7 10 11 13 14 17 16 20 18 23 22 26 25]
```
</details>
)DOC")
.Input(
0,
"X",
"(*Tensor`<float>`*): input tensor of shape $(a_1, a_2, ..., a_n, r)$")
.Input(
1,
"k",
"(*int*): number of top elements to retrieve")
.Output(
0,
"Values",
"(*Tensor`<float>`*): output tensor of shape $(a_1, a_2, ..., a_n, k)$")
.Output(
1,
"Indices",
"(*Tensor`<int>`*): tensor of indices of shape $(a_1, a_2, ..., a_n, k)$; indices values refer to each element's index in the last dimension of the `X` input tensor")
.Output(
2,
"Flattened_indices",
"(*Tensor`<int>`*): tensor of indices of shape $(a_1 * a_2 * ... * a_n * k,)$; indices values refer to each element's index in the flattened input tensor `X`");
OPERATOR_SCHEMA(TopKGradient).NumInputs(3).NumOutputs(1);
class GetTopKGradient : public GradientMakerBase {
using GradientMakerBase::GradientMakerBase;
vector<OperatorDef> GetGradientDefs() override {
return SingleGradientDef(
"TopKGradient",
"",
vector<string>{GO(0), O(1), I(0)},
vector<string>{GI(0)});
}
};
REGISTER_GRADIENT(TopK, GetTopKGradient);
} // namespace caffe2