forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathutility_ops.h
1582 lines (1390 loc) · 48.8 KB
/
utility_ops.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
#ifndef CAFFE2_OPERATORS_UTILITY_OPS_H_
#define CAFFE2_OPERATORS_UTILITY_OPS_H_
#include <cmath>
#include <map>
#include <utility>
#include "caffe2/core/common_omp.h"
#include "caffe2/core/context.h"
#include "caffe2/core/export_caffe2_op_to_c10.h"
#include <c10/util/irange.h>
#include "caffe2/core/logging.h"
#include "caffe2/core/operator.h"
#include "caffe2/core/types.h"
#include "caffe2/operators/gather_op.h"
#include "caffe2/utils/conversions.h"
#include "caffe2/utils/math.h"
C10_DECLARE_EXPORT_CAFFE2_OP_TO_C10(GatherRangesOp);
C10_DECLARE_EXPORT_CAFFE2_OP_TO_C10(LengthsGatherOp);
namespace caffe2 {
template <class Context>
class NanCheckOp final : public Operator<Context> {
public:
USE_OPERATOR_CONTEXT_FUNCTIONS;
template <class... Args>
explicit NanCheckOp(Args&&... args)
: Operator<Context>(std::forward<Args>(args)...) {}
bool RunOnDevice() override;
private:
TensorPrinter tensorPrinter_;
Tensor scratch_;
};
struct GetNanCheckGradient : public GradientMakerBase {
using GradientMakerBase::GradientMakerBase;
std::vector<OperatorDef> GetGradientDefs() override {
return {CreateOperatorDef(
"NanCheck",
"",
std::vector<string>{GO(0)},
std::vector<string>{GI(0)})};
}
};
template <class Context>
class IsNanOp final : public Operator<Context> {
public:
USE_OPERATOR_CONTEXT_FUNCTIONS;
IsNanOp(const OperatorDef& operator_def, Workspace* ws)
: Operator<Context>(operator_def, ws) {}
bool RunOnDevice() override {
return DispatchHelper<TensorTypes<float, double>>::call(this, Input(0));
}
template <typename T>
bool DoRunWithType() {
auto& X = Input(0);
auto* Y = Output(0, X.sizes(), at::dtype<uint8_t>());
const auto* X_data = X.template data<T>();
uint8_t* Y_data = Y->template mutable_data<uint8_t>();
for (const auto i : c10::irange(X.numel())) {
Y_data[i] = (uint8_t)(std::isnan(X_data[i]));
}
return true;
}
};
template <class Context>
class WallClockTimeOp final : public Operator<Context> {
public:
USE_OPERATOR_CONTEXT_FUNCTIONS;
template <class... Args>
explicit WallClockTimeOp(Args&&... args)
: Operator<Context>(std::forward<Args>(args)...) {}
bool RunOnDevice() override {
int64_t nanoseconds = static_cast<long int>(
std::chrono::duration_cast<std::chrono::nanoseconds>(
std::chrono::high_resolution_clock::now().time_since_epoch())
.count());
TensorCPU* output = Output(0);
output->Resize();
*output->template mutable_data<int64_t>() = nanoseconds;
return true;
}
};
const char kPrintFileExtension[] = ".log";
template <class Context>
class PrintOp final : public Operator<Context> {
public:
USE_OPERATOR_CONTEXT_FUNCTIONS;
USE_DISPATCH_HELPER;
explicit PrintOp(const OperatorDef& operator_def, Workspace* ws)
: Operator<Context>(operator_def, ws),
tensor_printer_(
operator_def.input(0),
this->template GetSingleArgument<int>("to_file", 0)
? ws->RootFolder() + "/" + operator_def.input(0) +
kPrintFileExtension
: "",
this->template GetSingleArgument<int>("limit", 0)),
every_n_(this->template GetSingleArgument<int>("every_n", 1)) {
CAFFE_ENFORCE_GE(every_n_, 1);
}
bool RunOnDevice() override {
if (++occurrences_mod_n_ > every_n_) {
occurrences_mod_n_ -= every_n_;
}
if (occurrences_mod_n_ != 1) {
return true;
}
if (!this->InputIsTensorType(0, Context::GetDeviceType()) &&
!this->InputIsTensorType(0, CPU)) {
LOG(INFO) << "Blob of type: "
<< OperatorBase::Inputs().at(0)->meta().name();
return true;
}
// special-case empty tensors since they may have no meta()
if (Input(0).numel() == 0) {
tensor_printer_.PrintMeta(Input(0));
return true;
}
using Types = TensorTypes<
float,
double,
int,
long,
bool,
char,
unsigned char,
std::string>;
if (this->InputIsTensorType(0, CPU)) {
return DispatchHelper<Types>::call(
this, this->template Input<Tensor>(0, CPU));
} else {
return DispatchHelper<Types>::call(this, Input(0));
}
}
private:
template <typename T>
bool DoRunWithType() {
// A simple strategy to copy tensor if needed, and have the tensor pointer
// pointing to the right instantiation. Note that tensor_copy_if_needed
// will handle memory deallocation itself so no smart pointer is needed.
const TensorCPU* tensor;
Tensor tensor_copy_if_needed(CPU);
if (this->InputIsTensorType(0, CPU)) {
tensor = &this->template Input<Tensor>(0, CPU);
} else {
// sync copy
tensor_copy_if_needed.CopyFrom(Input(0));
tensor = &tensor_copy_if_needed;
}
tensor_printer_.Print<T>(*tensor);
return true;
}
private:
TensorPrinter tensor_printer_;
int every_n_;
int occurrences_mod_n_{0};
};
/**
* @brief Alias op makes the output and the input share the same underlying
* storage.
*
* WARNING: in general, in caffe2's operator interface different tensors should
* have different underlying storage, which is the assumption made by
* components such as the dependency engine and memory optimization. Thus, in
* normal situations you should not use the AliasOp, especially in a normal
* forward-backward pass.
*
* The Alias op is provided so one can achieve true asynchrony, such as
* Hogwild, in a graph. But make sure you understand all the implications
* similar to multi-thread computation before you use it explicitly.
*/
template <class Context>
class AliasOp final : public Operator<Context> {
public:
USE_OPERATOR_CONTEXT_FUNCTIONS;
USE_SIMPLE_CTOR_DTOR(AliasOp);
bool RunOnDevice() override {
auto& input = Input(0);
CAFFE_ENFORCE_GE(input.numel(), 0, "Tensor is not initialized");
OutputTensorAlias(0, input);
return true;
}
};
/**
* @brief Pass inputs to outputs.
* Input:
* DATA - dense tensor.
* Output:
* DATA - same tensor as input.
*/
template <class Context>
class EnsureDenseOp final : public Operator<Context> {
public:
USE_OPERATOR_CONTEXT_FUNCTIONS;
USE_SIMPLE_CTOR_DTOR(EnsureDenseOp)
bool RunOnDevice() override {
const auto& input = Input(0);
auto* output = Output(0);
CAFFE_ENFORCE_GT(input.dim(), 0, "Input has to be at least a vector.");
// it is allowed to have the output inplace overwrite the input but also
// allow the output to be copied from the input
if (&input != output) {
output->ResizeLike(input);
output->CopyFrom(input, true /*async*/);
}
return true;
}
};
template <class Context>
class FlattenToVecOp : public Operator<Context> {
public:
USE_OPERATOR_CONTEXT_FUNCTIONS;
USE_SIMPLE_CTOR_DTOR(FlattenToVecOp);
bool RunOnDevice() override {
auto& input = Input(0);
auto* output = Output(0);
CAFFE_ENFORCE_GE(input.dim(), 1, "The rank of the tensor must be >= 1.");
output->Resize(input.numel());
context_.CopyItemsSameDevice(
input.dtype(),
input.numel(),
input.raw_data(),
output->raw_mutable_data(input.dtype()));
return true;
}
};
// Output gets the data of input(0), but reshapes it like input(1).
template <class Context>
class ResizeLikeOp : public Operator<Context> {
public:
USE_OPERATOR_CONTEXT_FUNCTIONS;
USE_SIMPLE_CTOR_DTOR(ResizeLikeOp);
bool RunOnDevice() override {
auto& input0 = Input(0);
auto& input1 = Input(1);
auto* output = Output(0);
CAFFE_ENFORCE_EQ(input0.numel(), input1.numel());
output->ResizeLike(Input(1));
context_.CopyItemsSameDevice(
input0.dtype(),
input0.numel(),
input0.raw_data(),
output->raw_mutable_data(input0.dtype()));
return true;
}
};
template <class Context>
class SumOp : public Operator<Context> {
public:
USE_OPERATOR_CONTEXT_FUNCTIONS;
USE_SIMPLE_CTOR_DTOR(SumOp);
template <typename T>
bool DoRunWithType() {
auto& input0 = Input(0);
if (InputSize() == 1) {
// TODO: better TensorOptions argument passing(e.g. default argument)
OutputTensorCopyFrom(
0,
// I'll change the order of argument in another diff, so that we don't
// need to write this
at::dtype(input0.dtype()),
input0,
true /*async*/);
return true;
}
auto* output = Output(0, input0.sizes(), at::dtype<T>());
T* output_data = output->template mutable_data<T>();
// Dimension checking
for (const auto i : c10::irange(1, InputSize())) {
if (output->sizes() != Input(i).sizes()) {
CAFFE_THROW(
"Check failed: output->sizes() == Input(i).sizes().",
"Description: Input #",
i,
", input dimension:",
Input(i).sizes(),
" should match output dimension: ",
output->sizes());
}
}
// Add the first two - works if in-place or not.
math::Add(
output->numel(),
input0.template data<T>(),
Input(1).template data<T>(),
output_data,
&context_);
// Add remaining.
for (const auto i : c10::irange(2, InputSize())) {
math::Add(
output->numel(),
output_data,
Input(i).template data<T>(),
output_data,
&context_);
}
return true;
}
bool RunOnDevice() override {
return DispatchHelper<TensorTypes<float, double, int32_t, int64_t>>::call(
this, Input(0));
}
};
inline OpSchema::Cost CostInferenceForSum(
const OperatorDef& def,
const std::vector<TensorShape>& in) {
struct OpSchema::Cost cost = PointwiseCostInference<1>(def, in);
cost.flops *= (in.size() - 1);
cost.params_bytes = 0;
return cost;
}
// WeightedSumOp computes the weighted sum of several tensors. The input should
// be in the form X_0, weight_0, X_1, weight_1, ... where X_i all have the same
// shape, and weight_i are size 1 tensors that specifies the weight of each
// vector. Note that if one wants to do in-place computation, it could only be
// done with X_0 also as the output, but not other X_i.
template <class Context>
class WeightedSumOp : public Operator<Context> {
public:
USE_OPERATOR_CONTEXT_FUNCTIONS;
USE_SIMPLE_CTOR_DTOR(WeightedSumOp);
bool RunOnDevice() override;
template <typename T>
bool DoRunWithType() {
// the code is written this way because of 10.1 + gcc 7.3.1 compiler bug
// as discussed at
// https://devtalk.nvidia.com/default/topic/1048037/linux/cuda-10-1-nvidia-you-re-now-quot-fixing-quot-gcc-bugs-that-gcc-doesn-t-even-have/
const int input_size = (*this).InputSize();
CAFFE_ENFORCE_EQ(input_size % 2, 0);
const auto& X0 = Input(0);
const auto& weight0 = Input(1);
CAFFE_ENFORCE_EQ(weight0.numel(), 1);
const int size = X0.numel();
// Note: removed Aliasing check, since Output already has
// caching capability
auto* Y = Output(0, X0.sizes(), at::dtype<T>());
T* Y_data = Y->template mutable_data<T>();
if (X0.numel() == 0) {
return true;
}
CAFFE_ENFORCE_GT(X0.numel(), 0);
if (input_size == 2) {
math::Scale<float, T>(
size,
weight0.template data<float>(),
X0.template data<T>(),
Y_data,
&context_);
return true;
}
const auto& X1 = Input(2);
CAFFE_ENFORCE(
!IsInputOutputAlias(2, 0),
"Input #2 is the same as output. If you want to do in-place updates, "
"put the output as input #0.");
const auto& weight1 = Input(3);
CAFFE_ENFORCE_EQ(X1.numel(), size);
CAFFE_ENFORCE_EQ(weight1.numel(), 1);
if (!IsInputOutputAlias(0, 0)) {
context_.template CopySameDevice<T>(size, X0.template data<T>(), Y_data);
}
math::Axpby<float, T, Context>(
size,
weight1.template data<float>(),
X1.template data<T>(),
weight0.template data<float>(),
Y_data,
&context_);
for (int i = 4; i < input_size; i += 2) {
const auto& Xi = Input(i);
// Do a check: if the input is the same as output, we have a problem -
// in-place update should always only happen with the zeroth input.
const std::string err_msg = "Input #" + to_string(i) +
" is the same as output. If you want to do in-place updates, "
"put the output as input #0.";
CAFFE_ENFORCE(!IsInputOutputAlias(i, 0), err_msg);
const auto& weighti = Input(i + 1);
CAFFE_ENFORCE_EQ(Xi.numel(), size);
CAFFE_ENFORCE_EQ(weighti.numel(), 1);
math::Axpy<float, T, Context>(
size,
weighti.template data<float>(),
Xi.template data<T>(),
Y_data,
&context_);
}
return true;
}
};
template <class Context>
class WeightedSumGradientOp : public Operator<Context> {
public:
USE_OPERATOR_CONTEXT_FUNCTIONS;
template <class... Args>
explicit WeightedSumGradientOp(Args&&... args)
: Operator<Context>(std::forward<Args>(args)...),
grad_on_w_(this->template GetSingleArgument<bool>("grad_on_w", false)) {
}
template <typename DstType>
bool DoRunWithType() {
CAFFE_ENFORCE_EQ(InputSize() % 2, 1);
auto output_size = grad_on_w_ ? InputSize() - 1 : InputSize() / 2;
CAFFE_ENFORCE_EQ(OutputSize(), output_size);
auto& dY = Input(0);
const auto* dY_data = dY.template data<DstType>();
int size = dY.numel();
// The input size should be the input size of the forward op plus 1
for (int i = 0; i < InputSize() / 2; i++) {
auto& cur_w = Input(2 * i + 2);
CAFFE_ENFORCE_EQ(cur_w.numel(), 1);
auto* cur_dX = Output(i, dY.sizes(), at::dtype<DstType>());
math::Scale<float, DstType, Context>(
size,
cur_w.template data<float>(),
dY_data,
cur_dX->template mutable_data<DstType>(),
&context_);
if (grad_on_w_) {
auto& cur_X = Input(2 * i + 1);
CAFFE_ENFORCE_EQ(cur_X.numel(), size);
auto* cur_dw = Output(i + output_size / 2);
cur_dw->Resize(1);
math::Dot<DstType, Context>(
size,
dY_data,
cur_X.template data<DstType>(),
cur_dw->template mutable_data<float>(),
&context_);
}
}
return true;
}
bool RunOnDevice() override;
private:
bool grad_on_w_;
};
/**
* @brief Update slices of the tensor in-place with weighted sum.
*
* ScatterWeightedSumOp is similar to WeightedSum and computes the weighted sum
* of several tensors. The first tensor has to be in-place and only slices of it
* on the first dimension as indexed by INDICES will be updated.
*
* Input:
* X_0 - tensor to be updated
* weight_0 - scalar weight for X_0, applied only to slices affected,
* INDICES - 1-D list of indices on the first dimension of X_0 that need to be
* updated
* X_1 - update slices, has to have shape of len(INDICES) + shape(X_0)[1:]
* weight_1 - scalar weight for X_1 update
* X_2, weight_2, ...
*
* Output:
* X_0 - has to be exactly the same tensor as the input 0
*
* Note: The op pretty much ignores the exact shapes of the input arguments and
* cares only about sizes. It's done for performance consideration to avoid
* unnecessary reshapes. Only first dimension of X_0 is important, let's call it
* N. If M is the total size of X_0 and K is the size of INDICES then X_i is
* assumed to be of shape K x (M / N) regardless of the real shape.
*
* Note: Each update in INDICES is applied independently which means that if
* duplicated elements are present in INDICES the corresponding slice of X_0
* will be scaled multiple times. Manual collapsing of INDICES is required
* beforehand if necessary.
*
* Note: Updates are applied sequentially by inputs which might have undesired
* consequences if the input tensor is accessed concurrently by different op
* (e.g. when doing Hogwild). Other threads might see intermediate results even
* on individual slice level, e.g. X_0 scaled by weight_0 but without any
* updates applied.
*
* For now really works only on CPU because of INDICES access
*/
template <class Context>
class ScatterWeightedSumOp : public Operator<Context> {
public:
USE_OPERATOR_CONTEXT_FUNCTIONS;
USE_SIMPLE_CTOR_DTOR(ScatterWeightedSumOp);
USE_DISPATCH_HELPER;
bool RunOnDevice() override {
const auto& x0 = Input(0);
const auto x0Type = TypeMetaToDataType(x0.dtype());
if (x0Type == TensorProto_DataType_FLOAT) {
return ScatterWeightedSumOp::template DoRun<float>();
}
if (x0Type == TensorProto_DataType_DOUBLE) {
return ScatterWeightedSumOp::template DoRun<double>();
}
CAFFE_THROW("Unsupported type of tensor X_0: ", x0.dtype().name());
}
private:
template<typename T>
bool DoRun() {
return DispatchHelper<TensorTypes<int32_t, int64_t>, T>::call(this, Input(2));
}
template <typename T, typename Index>
bool DoRunWithType() {
int64_t block_size = Input(0).size_from_dim(1);
return DispatchHelper<FixedValues<1>, T, Index>::call(this, block_size);
}
template <typename T, typename Index, int FixedSize>
bool DoRunWithValue() {
CAFFE_ENFORCE_EQ(InputSize() % 2, 1);
auto& X0 = Input(0);
auto& weight0 = Input(1);
auto& indices = Input(2);
auto* output = Output(0);
CAFFE_ENFORCE_EQ(&X0, output, "In place operation is required");
if (X0.numel() == 0) {
return true;
}
CAFFE_ENFORCE_GT(X0.numel(), 0);
CAFFE_ENFORCE_GT(X0.dim(), 0, "X0 has to be at least the vector");
CAFFE_ENFORCE_EQ(weight0.numel(), 1);
int64_t M = X0.numel();
int64_t N = X0.size(0);
int64_t K = indices.numel();
int64_t block_size = M / N;
T* data = output->template mutable_data<T>();
const Index* idxs = indices.template data<Index>();
float w0 = *weight0.template data<float>();
// It's most likely a constant so exact comparison is fine
if (w0 != 1.0) {
for (const auto i : c10::irange(K)) {
Index idx = idxs[i];
CAFFE_ENFORCE(
0 <= idx && idx < N,
"Index out of bounds: ",
idx,
", range 0 to ",
N);
math::ScaleFixedSize<T, Context, FixedSize>(
block_size,
w0,
data + block_size * idx,
data + block_size * idx,
&context_);
}
}
for (int inp = 3; inp < InputSize(); inp += 2) {
auto& X = Input(inp);
auto& weight = Input(inp + 1);
CAFFE_ENFORCE_EQ(X.numel(), block_size * K);
CAFFE_ENFORCE_EQ(weight.numel(), 1);
const T* x_data = X.template data<T>();
float w = *weight.template data<float>();
for (const auto i : c10::irange(K)) {
Index idx = idxs[i];
// double-checking the indices, but it's fine as it's DCHECK only
DCHECK(0 <= idx && idx < N)
<< "Index out of bounds: " << idx << ", range 0 to " << N;
math::AxpyFixedSize<T, Context, FixedSize>(
block_size,
w,
x_data + block_size * i,
data + block_size * idx,
&context_);
}
}
return true;
}
Tensor x_data_host_;
Tensor weights_host_;
Tensor x_data_device_;
Tensor weights_device_;
};
/**
* @brief Update slices of the tensor in-place by overriding.
*
* Input:
* DATA - tensor to be updated
* INDICES - 1-D list of indices on the first dimension of X_0 that need to be
* updated
* SLICES - update slices, has to have shape of len(INDICES) + shape(X_0)[1:]
*
* Output:
* DATA - has to be exactly the same tensor as the input 0
*
* Note: The op pretty much ignores the exact shapes of the input arguments and
* cares only about sizes. It's done for performance consideration to avoid
* unnecessary reshapes. Only first dimension of X_0 is important, let's call it
* N. If M is the total size of X_0 and K is the size of INDICES then X_i is
* assumed to be of shape K x (M / N) regardless of the real shape.
*
* Note: Each update in INDICES is applied independently which means that if
* duplicated elements are present in INDICES arbitrary one will win.
*
* For now really works only on CPU because of INDICES access
*/
template <class Context>
class ScatterAssignOp : public Operator<Context> {
public:
USE_OPERATOR_CONTEXT_FUNCTIONS;
virtual ~ScatterAssignOp() {}
template <class... Args>
explicit ScatterAssignOp(Args&&... args)
: Operator<Context>(std::forward<Args>(args)...),
runners_({{{TensorProto_DataType_INT32, TensorProto_DataType_FLOAT},
&ScatterAssignOp::DoRun<int32_t, float>},
{{TensorProto_DataType_INT32, TensorProto_DataType_FLOAT16},
&ScatterAssignOp::DoRun<int32_t, at::Half>},
{{TensorProto_DataType_INT32, TensorProto_DataType_UINT8},
&ScatterAssignOp::DoRun<int32_t, uint8_t>},
{{TensorProto_DataType_INT32, TensorProto_DataType_INT32},
&ScatterAssignOp::DoRun<int32_t, int32_t>},
{{TensorProto_DataType_INT32, TensorProto_DataType_INT64},
&ScatterAssignOp::DoRun<int32_t, int64_t>},
{{TensorProto_DataType_INT32, TensorProto_DataType_DOUBLE},
&ScatterAssignOp::DoRun<int32_t, double>},
{{TensorProto_DataType_INT64, TensorProto_DataType_FLOAT},
&ScatterAssignOp::DoRun<int64_t, float>},
{{TensorProto_DataType_INT64, TensorProto_DataType_FLOAT16},
&ScatterAssignOp::DoRun<int64_t, at::Half>},
{{TensorProto_DataType_INT64, TensorProto_DataType_UINT8},
&ScatterAssignOp::DoRun<int64_t, uint8_t>},
{{TensorProto_DataType_INT64, TensorProto_DataType_INT32},
&ScatterAssignOp::DoRun<int64_t, int32_t>},
{{TensorProto_DataType_INT64, TensorProto_DataType_INT64},
&ScatterAssignOp::DoRun<int64_t, int64_t>},
{{TensorProto_DataType_INT64, TensorProto_DataType_DOUBLE},
&ScatterAssignOp::DoRun<int64_t, double>}}) {}
bool RunOnDevice() override {
const auto& data = Input(DATA);
const auto& slices = Input(SLICES);
auto& indices = Input(INDICES);
const auto dataType = TypeMetaToDataType(data.dtype());
const auto slicesType = TypeMetaToDataType(slices.dtype());
const auto indicesType = TypeMetaToDataType(indices.dtype());
C10_UNUSED auto* output = Output(0);
auto runner = GetRunner(dataType, slicesType, indicesType);
(this->*runner)();
return true;
}
private:
typedef void (ScatterAssignOp::*RunnerType)();
typedef std::
map<std::pair<TensorProto_DataType, TensorProto_DataType>, RunnerType>
RunnerMap;
RunnerMap runners_;
RunnerType GetRunner(
const TensorProto_DataType dataType,
const TensorProto_DataType slicesType,
const TensorProto_DataType indicesType) {
CAFFE_ENFORCE_EQ(dataType, slicesType, "Data and slice types must match");
auto it = runners_.find({indicesType, dataType});
CAFFE_ENFORCE(
it != runners_.end(),
"Could not find the runner corresponding to indicesType, dataType = ",
indicesType,
" ",
dataType);
return it->second;
}
template <typename Index, typename T>
void DoRun() {
auto& input = Input(DATA);
auto& indices = Input(INDICES);
auto& slices = Input(SLICES);
auto* output = Output(0);
CAFFE_ENFORCE_EQ(&input, output, "In place operation is required");
CAFFE_ENFORCE_GT(input.dim(), 0, "X0 has to be at least the vector");
int64_t M = input.numel();
int64_t N = input.size(0);
int64_t K = indices.numel();
int64_t block_size = M / N;
CAFFE_ENFORCE_EQ(slices.numel(), block_size * K);
// TODO(dzhulgakov): it can be made to work with arbitrary data type by
// using raw_mutable_data
T* data = output->template mutable_data<T>();
const Index* idxs = indices.template data<Index>();
const T* slicesData = slices.template data<T>();
DoScatterAssign(data, idxs, slicesData, N, K, block_size);
}
template <typename Index, typename T>
void DoScatterAssign(
T* data,
const Index* idxs,
const T* slicesData,
int64_t N,
int64_t K,
int64_t block_size) {
for (const auto i : c10::irange(K)) {
Index idx = idxs[i];
// double-checking the indices, but it's fine as it's DCHECK only
DCHECK(0 <= idx && idx < N)
<< "Index out of bounds: " << idx << ", range 0 to " << N;
context_.template CopySameDevice<T>(
block_size, slicesData + block_size * i, data + block_size * idx);
}
}
INPUT_TAGS(DATA, INDICES, SLICES);
};
template <class Context>
class ScatterOp : public Operator<CPUContext> {
public:
USE_OPERATOR_CONTEXT_FUNCTIONS;
template <class... Args>
explicit ScatterOp(Args&&... args)
: Operator<CPUContext>(std::forward<Args>(args)...),
OP_SINGLE_ARG(int, "axis", axis_, 1) {}
~ScatterOp() noexcept override {}
bool RunOnDevice() override {
TORCH_CHECK(
Context::GetDeviceType() == kCPU,
"ScatterOp currently only supports CPU.")
return DispatchHelper<TensorTypes<int32_t, int64_t>>::call(
this, this->template Input<Tensor>(INDICES, CPU));
}
template <typename IndexType>
bool DoRunWithType() {
const Tensor& data = Input(DATA);
const Tensor& indices = Input(INDICES);
const Tensor& updates = Input(UPDATES);
const TypeMeta dataType = data.dtype();
size_t item_bytesize = dataType.itemsize();
// ONNX allows negative axis to index from the back, valid range: [-r, r].
axis_ = data.canonical_axis_index(axis_);
CAFFE_ENFORCE_GE(
data.dim(), axis_ + 1, "DATA should be at least [axis+1]-D");
CAFFE_ENFORCE_GE(axis_, 0, "Axis should be non-negative");
CAFFE_ENFORCE_LT(axis_, data.dim(), "Axis out of range");
Tensor* output = Output(0, data.sizes().vec(), at::dtype(dataType));
output->CopyFrom(data);
char* out = static_cast<char*>(output->raw_mutable_data(dataType));
// Succeed if size of output is zero, which can happen for empty batch which
// would have data dimension size of 0.
// This *must* be done AFTER output->raw_mutable_data() above as that has
// important allocation side effect that we must see.
if (output->numel() == 0) {
return true;
}
const IndexType* idxs = indices.template data<IndexType>();
const char* src_base = static_cast<const char*>(updates.raw_data());
const int64_t outer_dims_product = indices.size_to_dim(axis_);
const int64_t dst_indexing_axis_dim = data.size(axis_);
const int64_t idxs_block_size = indices.size_from_dim(axis_ + 1);
const int64_t src_block_size = updates.size_from_dim(axis_ + 1);
const int64_t dst_block_size = data.size_from_dim(axis_ + 1);
const int64_t idxs_batch_size = indices.size_from_dim(axis_);
const int64_t src_batch_size = updates.size_from_dim(axis_);
const int64_t dst_batch_size = data.size_from_dim(axis_);
const int64_t N = indices.size(axis_);
check_indexarray_range<IndexType>(idxs, N, dst_indexing_axis_dim);
// For a 3-D tensor, dst is updated as:
// dst[i][idxs[i][j][k]][k] = src[i][j][k] # if dim == 1
// where i, j, k are iterating over their corresponding axis I, J, K.
// For a given i, j, k tuple.
// idxs offset can be computed as i * J_src * K + j * K + k.
// src offset can be computed as i * J_src * K + j * K + k.
// dst offset can be computed as i * J_dst * K + idxs[idxs_offset] * K + K
// Note that idxs and src should have the same rank and shape.
// dst should have the same rank as idxs and src, but the dimension of dim
// axis can be different. That is why in the above equation, there is the
// difference of J_src and J_dst.
for (const auto outer_batch : c10::irange(outer_dims_product)) {
for (const auto i : c10::irange(N)) {
for (const auto inner_batch : c10::irange(idxs_block_size)) {
auto idxs_elem_idx =
outer_batch * idxs_batch_size + i * idxs_block_size + inner_batch;
auto src_elem_idx =
outer_batch * src_batch_size + i * src_block_size + inner_batch;
auto dst_elem_idx = outer_batch * dst_batch_size +
idxs[idxs_elem_idx] * dst_block_size + inner_batch;
auto src = src_base + src_elem_idx * item_bytesize;
auto dst = out + dst_elem_idx * item_bytesize;
context_.CopyItemsSameDevice(dataType, 1, src, dst);
}
}
}
return true;
}
INPUT_TAGS(DATA, INDICES, UPDATES);
// Check that indices fall within dimension array size with CAFFE_ENFORCE.
template <typename IndexType>
static void check_indexarray_range(
const IndexType* indices,
int64_t n,
IndexType indexing_axis_dim) {
for (const auto i : c10::irange(n)) {
auto idx = indices[i];
CAFFE_ENFORCE(
0 <= idx && idx < indexing_axis_dim,
"INDICES element is out of DATA bounds, id=",
idx,
" axis_dim=",
indexing_axis_dim);
}
}
protected:
int axis_;
};
template <class Context>
class LengthsToSegmentIdsOp : public Operator<Context> {
public:
USE_OPERATOR_CONTEXT_FUNCTIONS;
USE_SIMPLE_CTOR_DTOR(LengthsToSegmentIdsOp);
bool RunOnDevice() override {
auto& input = Input(0);
auto* output = Output(0);
auto* input_data = input.template data<int32_t>();
CAFFE_ENFORCE(input.sizes().size() == 1, "Input must be a vector.");
auto total_length =
std::accumulate(input_data, input_data + input.numel(), 0);
output->Resize(total_length);
auto* output_data = output->template mutable_data<int32_t>();
for (const auto i : c10::irange(input.numel())) {
auto len = input_data[i];
std::fill(output_data, output_data + len, i);
output_data += len;
}
return true;
}
};
template <class Context>
class LengthsToRangesOp : public Operator<Context> {
public:
USE_OPERATOR_CONTEXT_FUNCTIONS;
USE_SIMPLE_CTOR_DTOR(LengthsToRangesOp);
bool RunOnDevice() override {
auto& input = Input(0);
auto* output = Output(0);
auto* input_data = input.template data<int32_t>();
CAFFE_ENFORCE(input.sizes().size() == 1, "Input must be a vector.");
auto size = input.numel();
output->Resize(size, 2);
auto* output_data = output->template mutable_data<int32_t>();
int32_t offset = 0;
for (const auto i : c10::irange(size)) {
auto len = input_data[i];
output_data[i * 2] = offset;
output_data[i * 2 + 1] = len;
offset += len;
}
return true;
}
};
template <class Context>
class LengthsToOffsetsOp : public Operator<Context> {
public:
USE_OPERATOR_CONTEXT_FUNCTIONS;
template <class... Args>
explicit LengthsToOffsetsOp(Args&&... args)
: Operator<Context>(std::forward<Args>(args)...),
include_last_offset_(this->template GetSingleArgument<bool>(
"include_last_offset",
false)) {}
bool RunOnDevice() override {
auto& input = Input(0);
auto* output = Output(0);
auto* input_data = input.template data<int32_t>();
CAFFE_ENFORCE(input.sizes().size() == 1, "Input must be a vector.");
auto size = input.numel();
output->Resize(size + (include_last_offset_ ? 1 : 0));
auto* output_data = output->template mutable_data<int32_t>();
int32_t offset = 0;
for (const auto i : c10::irange(size)) {
auto len = input_data[i];
output_data[i] = offset;
offset += len;
}
if (include_last_offset_) {
output_data[size] = offset;
}
return true;
}
private:
bool include_last_offset_;
};
template <class Context>
class SegmentIdsToLengthsOp : public Operator<Context> {
public:
USE_OPERATOR_CONTEXT_FUNCTIONS;
USE_SIMPLE_CTOR_DTOR(SegmentIdsToLengthsOp);
bool RunOnDevice() override {
return DispatchHelper<TensorTypes<int32_t, int64_t>>::call(this, Input(0));
}
template <typename Index>
bool DoRunWithType() {
auto& input = Input(0);
if (input.dim() == 2) {
CAFFE_ENFORCE(
input.dim32(0) == 1 || input.dim32(1) == 1,
"Input must be a vector.");
} else {
CAFFE_ENFORCE_EQ(input.dim(), 1, "Input must be a vector.");
}
auto* input_data = input.template data<Index>();
auto input_size = input.numel();
auto* output = Output(0);
// segment id starts from 0